Scholarly Works, School of Animal Sciences
Permanent URI for this collection
Browse
Recent Submissions
- Transcriptome analysis unveils multiple reasons behind delayed and slower deposition of intramuscular fat compared to subcutaneous fat in cattleTan, Zhendong; Pokhrel, Binod; Zhou, Ziqi; Jiang, Honglin (2025-07-31)Background: Intramuscular fat refers to the white adipose tissue deposited between muscle fibers, and its quantity and distribution directly impact the quality and value of beef. Compared to subcutaneous fat, intramuscular fat develops later and accumulates more slowly in cattle. The reasons for the delayed development and slower growth of intramuscular fat in cattle remain unclear. Results: Histological analysis showed that adipocytes in intramuscular fat were smaller than those in subcutaneous fat from the same mature cattle, indicating a delayed development or slower growth of intramuscular fat compared to subcutaneous fat. Intramuscular fat had a lower capacity for retaining or incorporating long-chain fatty acids into triglycerides than subcutaneous fat. Comparing the transcriptomes of intramuscular and subcutaneous fat by RNA sequencing identified more than 1,000 genes differentially expressed (DEGs) between the two adipose depots. Genes upregulated in intramuscular fat included FOXO6, SLC27A1, HDAC9, WWTR1, and PIK3C2A, which are known to inhibit adipose tissue development and growth. Genes downregulated in intramuscular fat included FABP4, AGPAT2, ADIG, ADIRF, and PLIN2, which are known to promote adipose tissue development and growth. Functional enrichment analyses of these DEGs suggested that intramuscular fat may have a lower capacity for fatty acid binding and adipogenesis compared to subcutaneous fat. Furthermore, genes downregulated in intramuscular fat were enriched in signaling pathways such as the PPAR signaling pathway, whereas genes upregulated in intramuscular fat were enriched in pathways including the Wnt signaling pathway. Stromal vascular fraction (SVF) cells from intramuscular fat exhibited a lower adipogenic potential than those from subcutaneous fat. Conclusions: Multiple factors may contribute to the delayed and slower deposition of intramuscular fat compared to subcutaneous fat in cattle, including reduced fatty acid binding capacity, lower triglyceride synthesis, and decreased adipogenesis in intramuscular fat. These differences are possibly driven by lower expressions of genes such as AGPAT2, FABP4, and ADIG, higher expression of genes such as FOXO6, HDAC9, and SLC27A1, reduced activation of the PPAR signaling pathway, and increased activation of the Wnt signaling pathway in intramuscular fat.
- The Fermentative and Nutritional Effects of Limonene and a Cinnamaldehyde–Carvacrol Blend on Total Mixed Ration SilagesAmaral, Isabele Paola de Oliveira; Orrico Junior, Marco Antonio Previdelli; Retore, Marciana; Fernandes, Tatiane; da Silva, Yara América; de Oliveira, Mariany Felex; Orrico, Ana Carolina Amorim; de Andrade, Ronnie Coêlho; Muglia, Giuliano Reis Pereira (MDPI, 2025-07-18)This study evaluated the effects of different doses of limonene essential oil (LEO) and a blend of cinnamaldehyde and carvacrol (BCC) on the fermentative quality and chemical–bromatological composition of total mixed ration (TMR) silages. Two independent trials were conducted, each focused on one additive, using a completely randomized design with four treatments (0, 200, 400, and 600 mg/kg of dry matter), replicated across two seasons (summer and autumn), with five replicates per treatment per season. The silages were assessed for their chemical composition, fermentation profile, aerobic stability (AS), and storage losses. In the LEO trial, the dry matter (DM) content increased significantly by 0.047% for each mg/kg added. Dry matter recovery (DMR) peaked at 97.9% at 473 mg/kg (p < 0.01), while lactic acid (LA) production reached 5.87% DM at 456 mg/kg. Ethanol concentrations decreased to 0.13% DM at 392 mg/kg (p = 0.04). The highest AS value (114 h) was observed at 203.7 mg/kg, but AS declined slightly at the highest LEO dose (600 mg/kg). No significant effects were observed for the pH, neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), or non-fiber carbohydrates (NFCs). In the BCC trial, DMR reached 98.2% at 548 mg/kg (p < 0.001), and effluent losses decreased by approximately 20 kg/ton DM. LA production peaked at 6.41% DM at 412 mg/kg (p < 0.001), and AS reached 131 h at 359 mg/kg. BCC increased NDF (from 23.27% to 27.73%) and ADF (from 35.13% to 41.20%) linearly, while NFCs and the total digestible nutrients (TDN) decreased by 0.0007% and 0.039% per mg of BCC, respectively. In conclusion, both additives improved the fermentation efficiency by increasing LA and reducing losses. LEO was more effective for DM retention and ethanol reduction, while BCC improved DMR and AS, with distinct effects on fiber and energy fractions.
- Evaluating the effectiveness of participatory science dog teams to detect devitalized Spotted Lanternfly (Lycorma delicatula) egg massesDickinson, Sally; Nita, Mizuho; Aviles-Rosa, Edgar O.; Hall, Nathan; Feuerbacher, Erica N. (PeerJ, 2025-07-16)The spotted lanternfly (Lycorma delicatula, SLF) is an invasive planthopper first detected in the United States in 2014, with initial sightings in Pennsylvania. SLF poses a serious threat to agriculture, particularly targeting grapevines, hops, and ornamental plants, resulting in substantial annual economic losses. Due to its life cycle, the early detection and removal of egg masses are the most effective strategies for preventing long-distance dispersal. However, visual detection by humans is time-consuming and inefficient. Detection dogs have demonstrated high accuracy in locating SLF egg masses and differentiating them from environmental distractors. Despite their effectiveness, the number of dogs available through governmental channels is insufficient to meet demand. This study evaluated whether community scientist dog-handler teams could meet standardized detection criteria using SLF egg masses. Teams from across the U.S. were recruited and trained using devitalized egg masses, with oversight provided by local trainers. Following a 3- to 6-month independent training period, team performance was assessed through an odor recognition test and a field trial. Dogs demonstrated a sensitivity of 82% in controlled testing and 58% in field conditions. These results provide proof of concept; community scientist dog teams could play a significant role in protecting their local environments and agriculture from invasive species.
- Narasin Supplementation Enhances Growth Performance in Grazing CattlePolizel, Daniel M.; Marques, Rodrigo S.; Limede, Arnaldo C.; Cidrini, Fernando A. A.; Gonçalves, José Renato S.; Carvalho, Pedro H. V.; Pires, Alexandre V. (MDPI, 2025-07-01)Three experiments were conducted to evaluate the effects of narasin inclusion on the growth performance of grazing beef cattle under similar forage availability and quality. All three experiments were arranged in a randomized complete block design according to the initial BW. Exp 1: 200 Nellore calves (initial BW = 177 ± 15 kg) were randomly allocated in three treatments for 84 d during the rainy season: (1) CONT: mineral supplement; (2) 1400 N: 1400 mg of narasin/kg of supplement; and (3) 2100 N: 2100 mg of narasin/kg of supplement. Narasin inclusion increased (p ≤ 0.01) ADG by 0.077 kg/d and final BW by 6.7 kg, with no differences (p ≥ 0.50) between narasin doses. Exp 2: 240 Nellore calves (initial BW = 195 ± 19 kg) were allocated to CONT or N1400 for 112 d during the rainy season. Narasin inclusion increased (p ≤ 0.01) ADG by 0.082 kg/d and final BW by 9.1 kg. Exp 3: 150 Nellore yearlings (initial BW = 332 ± 22 kg) were allocated for 112 d during the dry season: (1) PROT: protein supplement and (2) PROT250: inclusion of 250 mg of narasin/kg of supplement. Narasin inclusion increased (p ≤ 0.04) ADG by 0.048 kg and final BW by 5.3 kg. For all experiments, narasin inclusion did not impact (p ≥ 0.25) supplement intake. Hence, inclusion of narasin in mineral and protein supplements consistently enhances growth performance of grazing beef cattle across different seasons and production stages, without impacting supplement intake, providing an effective nutritional strategy to enhance productivity on tropical pastures.
- Embryonic Thermal Manipulation Affects Body Performance Parameters and Cecum Microbiome in Broiler Chickens in Response to Post-Hatch Chronic Heat Stress ChallengeDahadha, Rahmeh; Hundam, Seif; Al-Zghoul, Mohammad Borhan; Alanagreh, Lo’ai; Ababneh, Mustafa; Mayyas, Mohammad; Alghizzawi, Daoud; Mustafa, Minas A.; Gerrard, David E.; Dalloul, Rami A. (MDPI, 2025-06-06)Rising global temperatures challenge poultry production by disrupting the cecal microbiota, which is essential for chicken health. Thermal manipulation (TM) during embryogenesis is a potential strategy to enhance thermotolerance in broilers. This study examined TM’s effects on the cecal microbiome, body weight (BW), and body temperature (BT) under chronic heat stress (CHS). Fertile Indian River eggs (n = 800) were incubated under control (37.8 °C, 56% RH) or TM conditions (39 °C, 65% RH for 18 h per day from embryonic day 10 to 18). On post-hatch day 18, male chicks were assigned to either CHS (35 ± 0.5 °C for five days) or thermoneutral conditions (24 ± 0.5 °C). The CHS-TM group showed a significantly higher BW than the CHS-CON group (p < 0.05). Under thermoneutral conditions, TM chicks had a lower BT on day 1 (p < 0.05), while the CHS-TM group exhibited a non-significant BT reduction compared to the CHS-CON group under heat stress (p > 0.05). An analysis of the gut microbiome showed that the beta diversity analysis (PERMANOVA, p < 0.05) indicated distinct microbial shifts. Firmicutes and Bacteroidota dominated the phylum level, with CHS increased Bacilli and Lactobacillus while reducing Lachnospirales in the CHS-TM group. These findings suggest that TM modulates gut microbiota and mitigates BW loss, offering a potential strategy to enhance broilers’ resilience to heat stress.
- Impact of Thermal Manipulation of Broiler Eggs on Growth Performance, Splenic Inflammatory Cytokine Levels, and Heat Shock Protein Responses to Post-Hatch Lipopolysaccharide (LPS) ChallengeAl-Zghoul, Mohammad Borhan; Hundam, Seif; Mayyas, Mohammad; Gerrard, David E.; Dalloul, Rami A. (MDPI, 2025-06-12)Thermal manipulation (TM) during embryogenesis is a promising non-pharmacological strategy to enhance physiological resilience in broiler chickens. This study evaluated the impact of thermal conditioning of fertile eggs on growth performance, inflammatory responses, and molecular stress markers following a post-hatch lipopolysaccharide (LPS) challenge. Fertilized eggs (average weight 62 ± 3 g) were obtained from 35-week-old Indian River broiler breeder hens. A total of 720 eggs were randomly assigned to either the control group (n = 360) or the TM group (n = 360), with each group consisting of two replicates of 180 eggs. Control eggs were maintained under standard incubation conditions (37.8 °C, 56% RH), while TM eggs were subjected to elevated temperature (38.8 °C, 65% RH) for 18 h daily from embryonic day 10 to 18. On post-hatch day 15, control and TM groups were administered either saline or LPS via intraperitoneal (IP) injection. Body weight and temperature, internal organ weights, and splenic mRNA expression levels of inflammatory cytokines, toll-like receptors, transcription factors, and heat shock proteins were assessed. TM did not alter hatchability (p = 0.633), but significantly shortened hatch time (p < 0.05) and improved feed efficiency (p < 0.05). While LPS induced marked inflammatory responses in all birds, those subjected to TM exhibited attenuated proinflammatory cytokine expression, enhanced anti-inflammatory signaling, and differential regulation of stress-associated genes, including nuclear factor kappa B (NF-κB), heat shock protein 70 (HSP70), and heat shock factors (HSFs). These findings suggest that TM during incubation promotes a more regulated immune response and improved stress adaptation post-hatch. This approach offers a potential antibiotic-free intervention to enhance broiler health, performance, and resilience under immunological stress.
- Follicular Fluid from Cows That Express Estrus During a Fixed-Time Artificial Insemination Protocol Promotes Blastocyst DevelopmentHarl, Audra W.; Negrón-Pérez, Verónica M.; Stewart, Jacob W.; Perry, George A.; Ealy, Alan D.; Rhoads, Michelle L. (MDPI, 2025-04-25)It is not yet understood why cows that exhibit estrus and ovulate are more likely to become pregnant than those that ovulate but do not exhibit estrus during a fixed-time artificial insemination (FTAI) protocol. The objective of this work was to determine whether the follicular fluid from cows that exhibit estrus contributes to the increased likelihood of pregnancy. Lactating crossbred cows were subjected to an FTAI estrous synchronization protocol. Estrous behavior was observed and recorded prior to transvaginal follicle aspiration from cows that did (estrus, n = 7) or did not exhibit estrus (non-estrus, n = 6). Follicular fluid (25%) was then added to in vitro maturation media for the maturation of oocytes (n = 1489) from slaughterhouse ovaries. Cleavage rates were not affected by the estrous status of the cows from which the follicular fluid was collected. Blastocyst rates, however, were greater following maturation in the presence of follicular fluid from estrus cows compared to non-estrus cows (p ≤ 0.01). This difference in blastocyst rates was not related to blastocyst cell numbers (inner cell mass, trophoblast, and total), as they did not differ between estrus and non-estrus animals. This study demonstrates that the follicular fluid, and thus, the follicular environment just prior to ovulation does indeed contribute to improved pregnancy rates following FTAI.
- Development of a Selective Agar for the Detection of Probiotic Strain Ligilactobacillus animalis NP51 and Other Lactic Acid Bacteria in Cattle FeedThompson, Kasey; Akter, Shamima; Ferguson-Noel, Naola; Maurer, John J.; Lee, Margie D. (MDPI, 2025-06-13)The enormous potential of bacteriotherapy in disease treatment and prevention has created a large probiotic market. Significant challenges exist in assessing probiotic quality, efficacy and viability. Lactic acid bacteria (LAB) are commonly used probiotics and the most abundant of the vertebrate microbiota. The goal of this study was to make MRS agar specific for probiotic Ligilactobacillus animalis NP51, since the current formulation is not sufficiently selective. Here, 53 chemicals were screened to identify compound(s) that reduced the growth of non-LAB and fungi on de Mann, Rogosa, and Sharpe (MRS) agar, and which were selective for LAB and specifically the probiotic strain NP51. Cattle feed was selected as the sample type, as it is commonly amended with Lactobacillus or yeast probiotics and often includes silage, a diverse microbial consortium of fungi and LAB. Modified MRS was evaluated for its effectiveness in determining probiotic viability and the detection of L. animalis NP51 in cattle feed, amended with this probiotic. qPCR was used to specifically detect and enumerate NP51 in commercial and experimental feed samples. For four selective agents, nystatin, guanidine hydrochloride, CuSO4, and ZnCl, it was identified that when used together, they reduced the growth of bacteria and fungi, but did not inhibit the Lactobacillus probiotic NP51 and other LAB. Metagenomic analysis revealed LAB as the major group cultivated on modified MRS agar from the plating of cattle feed amended with silage. As an enrichment, modified MRS broth improved the qPCR detection of probiotic strain NP51. This study illustrated that improvements can be made to existing bacteriological media for enumerating probiotic NP51 and determining the product’s viability.
- Mare Milk and Foal Plasma Fatty Acid Composition in Foals Born to Mares Fed Either Flax or Fish Oil During Late GestationSnyder-Peterson, Erica A.; Shost, Nichola; Thomson-Parker, Timber; Mowry, Kayla C.; Fikes, Kalley K.; Smith, Rachelle; Corl, Benjamin; Wagner, Ashley; Girard, Ivan; Suagee-Bedore, Jessica K. (MDPI, 2025-05-30)Maternal supplementation with omega-3 fatty acids during late gestation has been shown to have a variety of benefits for neonates. The current study utilized 13 mares and their foals, assigned to one of three dietary treatments: an unsupplemented control diet (CON; n = 5), or the addition of either fish oil-derived omega-3 (FO; n = 5) or a flaxseed (FLAX; n = 3) supplement. The mares received treatments beginning on day 310 of gestation through day 5 post-parturition. Samples of plasma were collected from the mares prior to beginning supplementation, on days 0, 5, and 30 post-partum. Milk samples were collected from the mares 12 h post-partum. Plasma samples were collected from the foals at birth and at 5 and 30 d post-partum. The fatty acid compositions of the mare plasma, mare milk, and foal plasma were determined using gas chromatography. The data were analyzed using repeated-measures ANOVA. Foals born to FO mares exhibited increased plasma docosahexaenoic acid (DHA) levels at birth compared with those born to CON mares. Across the treatments, the plasma from foals at birth prior to nursing had the highest DHA content compared with on d 5 and 30. No treatment differences were observed in the mare plasma or milk fatty acid composition for DHA levels. FLAX mares had higher 20:3 n6 plasma proportions than FO or CON mares. Beginning supplementation with fish oil on day 310 of gestation may be sufficient to elevate neonatal foal DHA concentrations.
- Valine and nonessential amino acids affect bidirectional transport rates of leucine and isoleucine in bovine mammary epithelial cellsWeston, A. Hruby; Teixeira, I. A. M. A.; Yoder, P. S.; Pilonero, T.; Hanigan, Mark D. (Elsevier, 2024-04)A more complete understanding of the mechanisms controlling AA transport in mammary glands of dairy cattle will help identify solutions to increase nitrogen feeding efficiency on farms. It was hypothesized that Ala, Gln, and Gly (NEAAG), which are actively transported into cells and exchanged for all branched-chain AA (BCAA), may stimulate transport of BCAA, and that Val may antagonize transport of the other BCAA due to transporter competition. Thus, we evaluated the effects of varying concentrations of NEAAG and Val on transport and metabolism of the BCAA Ala, Met, Phe, and Thr by bovine mammary epithelial cells. Primary cultures of bovine mammary epithelial cells were assigned to treatments of low (70% of mean in vivo plasma concentrations of lactating dairy cows) and high (200%) concentrations of Val and NEAAG (LVal and LNEAAG, HVal and HNEAAG, respectively) in a 2 × 2 factorial design. Cells were preloaded with treatment media containing [15N]-labeled AA for 24 h. The [15N]-labeled media were replaced with treatment media containing [13C]-labeled AA. Media and cells were harvested from plates at 0, 0.5, 1, 5, 15, 30, 60, and 240 min after application of the [13C]-labeled AA and assessed for [15N]- and [13C]-AA label concentrations. The data were used to derive transport, transamination, irreversible loss, and protein-synthesis fluxes. All Val fluxes, except synthesis of rapidly exchanging tissue protein, increased with the HVal treatment. Interestingly, the rapidly exchanging tissue protein, transamination, and irreversible-loss rate constants decreased with HVal, indicating that the significant flux increases were primarily driven by mass action with the cells resisting the flux increases by downregulating activity. However, the decreases could also reflect saturation of processes that would drive down the mass-action rate constants. This is supported by decreases in the same rate constants for Ile and Leu with HVal. This could be due to either competition for shared transamination and oxidation reactions or a reduction in enzymatic activity. Also, NEAAG did not affect Val fluxes, but influx and efflux rate constants increased for both Val and Leu with HNEAAG, indicating an activating substrate effect. Overall, AA transport rates generally responded concordantly with extracellular concentrations, indicating the transporters are not substrate-saturated within the in vivo range. However, BCAA transamination and oxidation enzymes may be approaching saturation within in vivo ranges. In addition, System L transport activity appeared to be stimulated by as much as 75% with high intracellular concentrations of Ala, Gln, and Gly. High concentrations of Val antagonized transport activity of Ile and Leu by 68% and 15%, respectively, indicating competitive inhibition, but this was only observable at HNEAAG concentrations. The exchange transporters of System L transport 8 of the essential AA that make up approximately 40% of milk protein, so better understanding this transporter is an important step for increased efficiency.
- Ruminally Protected Isoleucine, Leucine, Methionine, and Threonine Supplementation of Low-Protein Diets Improved the Performance and Nitrogen Efficiency of Dairy CowsQin, Xiaoli; Lin, Xueyan; Hanigan, Mark D.; Zhao, Kai; Hu, Zhiyong; Wang, Yun; Hou, Qiuling; Wang, Zhonghua (MDPI, 2025-04-24)This study evaluated the effects of supplementing rumen-protected methionine, threonine, isoleucine, and leucine to low-protein diets on lactating dairy cow performance. Sixty Holstein cows were assigned to one of four dietary treatments in a 9-week randomized complete block design: positive control (16% crude protein diet; 16% CP), negative control (12% CP), 12% CP plus the four essential amino acids (12% CP + EAA), and 14% CP supplemented with the four EAA (14% CP + EAA). The milk protein yield was significantly decreased in the 12% CP group compared to the 16% CP group but was restored to comparable levels with EAA supplementation of both the 12% and 14% CP diets. Dietary nitrogen intake and urinary nitrogen excretion both increased with higher dietary CP levels. Nitrogen utilization efficiency in milk was significantly improved by EAA supplementation, with the highest efficiency observed in the 12% CP + EAA treatment (39.0% vs. 33.3% in the 16% CP diet). Plasma urea levels increased with elevated dietary CP and EAA supplementation. Moreover, EAA supplementation significantly elevated venous methionine levels and showed a tendency to increase venous leucine levels. Additionally, compared to the negative control, EAA supplementation increased concentrations of glucagon and prolactin (p < 0.05). EAA supplementation of low-protein diets, particularly the 14% CP diet, improved the dietary protein efficiency of lactating cows without a concomitant decrease in milk protein yield.
- Monoubiquitination of histone H2B is a crucial regulator of the transcriptome during memory formationNavabpour, Shaghayegh; Farrell, Kayla; Kincaid, Shannon E.; Omar, Nour; Musaus, Madeline; Lin, Yu; Xie, Hehuang; Jarome, Timothy J. (Cold Spring Harbor Laboratory Press, 2024-03)Posttranslational modification of histone proteins is critical for memory formation. Recently, we showed that monoubiquitination of histone H2B at lysine 120 (H2Bub) is critical for memory formation in the hippocampus. However, the transcriptome controlled by H2Bub remains unknown. Here, we found that fear conditioning in male rats increased or decreased the expression of 86 genes in the hippocampus but, surprisingly, siRNA-mediated knockdown of the H2Bub ligase, Rnf20, abolished changes in all but one of these genes. These findings suggest that monoubiquitination of histone H2B is a crucial regulator of the transcriptome during memory formation.
- Increasing H2B Monoubiquitination Improves the Transcriptome and Memory in the Aged HippocampusKincaid, Shannon; Setenet, Gueladouan; Preveza, Natalie J.; Arndt, Kaiser C.; Gwin, Phillip; Lin, Yu; Xie, Hehuang; Jarome, Timothy J. (Society for Neuroscience, 2025-04)A decline in cognitive abilities is associated with the aging process, affecting nearly 33% of US adults over the age of 70, and is a risk factor for the development of dementia and Alzheimer's disease. Several studies have reported age-related alterations in the transcriptome in the hippocampus, a major site of memory storage that is among the first regions impacted with age, dementia, and Alzheimer's disease. However, much remains unknown about why these transcriptional changes exist in the aged hippocampus and how this impacts memory late in life. Here, we show that monoubiquitination of histone H2B (H2Bubi), an epigenetic mechanism recently reported to be major regulator of the epigenome and transcriptome during memory formation in the young adult brain, decreases with age in the hippocampus of male rats. In vivo CRISPR-dCas9-mediated upregulation of Rnf20, the only ubiquitin E3 ligase for H2B, in the hippocampus significantly improved memory retention in aged rats. Remarkably, RNA-seq analysis revealed that in addition to the 18 genes typically upregulated in the aged rat hippocampus following contextual fear conditioning, Rnf20 upregulation caused learning-related increases and decreases in 40 and 11 unique genes, respectively, suggesting that these 51 genes may be among those most critical for improving memory in advanced age. Together, these data suggest that H2B monoubiquitination is a significant regulator of age-related dysregulation of the transcriptome and impairments in memory.
- Effects of Embryonic Thermal Manipulation on Body Performance and Cecum Microbiome in Broiler Chickens Following a Post-Hatch Lipopolysaccharide ChallengeHundam, Seif; Al-Zghoul, Mohammad Borhan; Ababneh, Mustafa; Alanagreh, Lo’ai; Dahadha, Rahmeh; Mayyas, Mohammad; Alghizzawi, Daoud; Mustafa, Minas A.; Gerrard, David E.; Dalloul, Rami A. (MDPI, 2025-04-17)Thermal manipulation (TM) during embryogenesis has emerged as a promising strategy to enhance post-hatch performance and improve resilience to environmental and bacterial stress, which offers a potential alternative to reduce the reliance on antibiotic growth promoters (AGPs) in broiler production. This study investigated TM’s ability to modulate broilers’ cecal microbiota and enhance resilience to lipopolysaccharide (LPS)-induced stress. Eggs in the control group (CON) were incubated at 37.8 °C and 56% relative humidity (RH), while TM eggs were exposed to 39 °C and 65% RH for 18 h daily from embryonic days 10–18. Post-hatch, the LPS subgroups (LPS-CON, LPS-TM) received intraperitoneal LPS injections, and body weight (BW) and temperature (BT) were monitored. Cecal samples were collected for microbiome sequencing. Alpha diversity showed no differences (p > 0.05), but beta diversity revealed differences between groups (PERMANOVA, p < 0.05). Firmicutes and Bacteroidota dominated the microbiota at the phylum level. Oscillospirales were enriched in the TM groups (p < 0.001) and Lactobacillales were increased in the LPS-CON group (p < 0.019). LPS reduced BT in the CON group (p < 0.01), but LPS-TM birds bypassed hypothermia. LPS significantly reduced BW (p < 0.001), while TM had no significant effect. These findings demonstrate TM’s enduring influence on gut microbiota and stress resilience, highlighting its potential to reduce antibiotic reliance and mitigate antimicrobial resistance (AMR) in poultry production.
- KHAIT: K-9 Handler Artificial Intelligence Teaming for Collaborative SensemakingWilchek, Matthew; Wang, Linhan; Dickinson, Sally; Feuerbacher, Erica N.; Luther, Kurt; Batarseh, Feras A. (ACM, 2025-03-24)In urban search and rescue (USAR) operations, communication between handlers and specially trained canines is crucial but often complicated by challenging environments and the specific behaviors canines are trained to exhibit when detecting a person. Since a USAR canine often works out of sight of the handler, the handler lacks awareness of the canine’s location and situation, known as the “sensemaking gap.” In this paper, we propose KHAIT, a novel approach to close the sensemaking gap and enhance USAR effectiveness by integrating object detection-based Artificial Intelligence (AI) and Augmented Reality (AR). Equipped with AI-powered cameras, edge computing, and AR headsets, KHAIT enables precise and rapid object detection from a canine’s perspective, improving survivor localization. We evaluate this approach in a real-world USAR environment, demonstrating an average survival allocation time decrease of 22%, enhancing the speed and accuracy of operations.
- Frustration and its impact on search and rescue caninesDickinson, Sally; Feuerbacher, Erica N. (Frontiers, 2025-03-07)Despite advances in modern technology, dogs remain the primary detection tool in search and rescue (SAR) missions, locating missing persons across diverse and dynamic environments, including wilderness, avalanche zones, water, and disaster areas. Their exceptional olfactory abilities, combined with their capacity to process complex discrimination tasks and adapt to varied environmental stimuli, make them uniquely suited for this work. However, SAR operations can be both physically and psychologically demanding, requiring sustained focus, endurance, and consistent performance under stressful conditions. Frustration, a form of psychological stress, arises when a dog encounters blocked access to a goal or when an expectation is violated, triggering physiological and behavioral changes that may impact performance. This study investigated the physiological and behavioral responses of SAR dogs to two distinct stress conditions: psychological stress induced by frustration and physiological stress induced by moderate exercise. We measured heart rate variability as an indicator of autonomic nervous system response to stress and analyzed search task performance to assess how frustration and exercise affected the dogs’ latency and accuracy in executing their trained final response to the target odor. Our results revealed significant decreases in heart rate variability following frustration and increased latency in the search task, suggesting that frustration had a more pronounced impact on the dogs’ physiological state and performance compared to exercise. By examining the effects of psychological and physiological stress, this study contributes to a deeper understanding of how different stressors influence SAR dog performance and welfare. These findings provide valuable insights for optimizing training methodologies and operational preparedness, ensuring both the effectiveness and well-being of SAR dogs in the field.
- Phytochemical Composition and Effects of Aqueous Extracts from Moringa oleifera Leaves on In Vitro Ruminal Fermentation ParametersOliveira, Inessa Steffany Torres de; Fernandes, Tatiane; Santos, Aylpy Renan Dutra; González Aquino, Carolina; Vega Britez, Gustavo Daniel; Vargas Junior, Fernando Miranda de (MDPI, 2025-01-20)This study evaluated the phytochemical composition of aqueous extracts of Moringa oleifera (MO) obtained by maceration, decoction, and infusion of fresh or dried leaves and their effects on in vitro ruminal fermentation parameters. Phytochemical prospecting analyses were conducted to determine the bioactive compounds in each aqueous extract. Regarding the in vitro ruminal fermentation study, the seven treatments were the following: no addition of extract or control (CON); extract obtained by maceration of fresh leaves (MFL); extract obtained by maceration of dry leaves (MDL); extract obtained by decoction of the fresh leaves (DFL); extract obtained by decoction of dry leaves (DDL); extract obtained by infusion of fresh leaves (IFL) and extract obtained by infusion of dry leaves (IDL). The concentration of all bioactives (saponins, flavonoids, tannins, and alkaloids) quantified was higher when fresh MO leaves were used (p < 0.001). DFL and DDL provided less elimination of azino-bis radicals. On the other hand, MFL resulted in a greater elimination of these radicals. Extracts obtained from fresh leaves resulted in a greater total production of short-chain fatty acids, acetate, and butyrate (p < 0.05). Compared to the control treatment, the inclusion of extracts obtained from fresh leaves provided a higher concentration of propionate (p = 0.049). It is thereby concluded that the use of fresh MO leaves for the production of aqueous extracts is the most recommended, as it results in a higher concentration of bioactive compounds. The use of aqueous extracts of fresh MO leaves increases the total production of fatty acids but does not change their proportion.
- Effects of Monensin, Calcareous Algae, and Essential Oils on Performance, Carcass Traits, and Methane Emissions Across Different Breeds of Feedlot-Finished Beef CattleGuerreiro, Pedro; Costa, Diogo F. A.; Limede, Arnaldo C.; Congio, Guilhermo F. S.; Meschiatti, Murillo A. P.; Bernardes, Priscila A.; Santos, Flavio A. Portela (MDPI, 2025-01-08)With the growing use of crossbred cattle in Brazilian feedlots and increasing pressure to reduce antibiotic use as growth promoters, this study examines the impact of three feed additives—monensin (MON), monensin with Lithothamnium calcareum (LCM), and a blend of essential oils (BEO)—on the performance of Nellore (NEL) and crossbred (CROSS) cattle. A total of 90 Nellore and 90 crossbred bulls were assigned to a completely randomized block design with a 2 × 3 factorial design for 112 days, and all received the same diet with varying additives. Their methane (CH4) emissions were estimated. All data were analyzed using the emmeans package of R software (version 4.4.1). Crossbred cattle outperformed Nellore in average daily gain (ADG), hot carcass weight (HCW), and dry matter intake (DMI), though feed efficiency remained unaffected. Across additives, no significant differences were observed in ADG, HCW, or dressing percentage. However, LCM had a lower DMI than the BEO, while MON showed better feed efficiency than the BEO. A breed-by-additive interaction trend was noted for DMI as a percentage of body weight (DMI%BW), with Nellore bulls on LCM diets showing the lowest DMI%BW. Crossbreeds had greater net energy (NE) requirements for maintenance (NEm) and gain (NEg), and MON-fed animals had greater NEm and NEg than the BEO. Crossbred bulls had greater daily methane (CH4) emissions than Nellore bulls. Animals on the BEO had greater daily CH4 emissions and greater g CH4/kg metabolic BW than LCM bulls. In conclusion, the addition of Lithothamnium calcareum to monensin did not enhance performance compared to monensin alone. Monensin outperformed the BEO in feed efficiency and nutrient utilization.
- Predicting Dairy Calf Body Weight from Depth Images Using Deep Learning (YOLOv8) and Threshold Segmentation with Cross-Validation and Longitudinal AnalysisLiao, Mingsi; Morota, Gota; Bi, Ye; Cockrum, Rebecca R. (MDPI, 2025-03-18)Monitoring calf body weight (BW) before weaning is essential for assessing growth, feed efficiency, health, and weaning readiness. However, labor, time, and facility constraints limit BW collection. Additionally, Holstein calf coat patterns complicate image-based BW estimation, and few studies have explored non-contact measurements taken at early time points for predicting later BW. The objectives of this study were to (1) develop deep learning-based segmentation models for extracting calf body metrics, (2) compare deep learning segmentation with threshold-based methods, and (3) evaluate BW prediction using single-time-point cross-validation with linear regression (LR) and extreme gradient boosting (XGBoost) and multiple-time-point cross-validation with LR, XGBoost, and a linear mixed model (LMM). Depth images from Holstein (n = 63) and Jersey (n = 5) pre-weaning calves were collected, with 20 Holstein calves being weighed manually. Results showed that You Only Look Once version 8 (YOLOv8) deep learning segmentation (intersection over union = 0.98) outperformed threshold-based methods (0.89). In single-time-point cross-validation, XGBoost achieved the best BW prediction (R2 = 0.91, mean absolute percentage error (MAPE) = 4.37%), while LMM provided the most accurate longitudinal BW prediction (R2 = 0.99, MAPE = 2.39%). These findings highlight the potential of deep learning for automated BW prediction, enhancing farm management.
- Are smelly toys more fun? Shelter dogs' preferences for toys, scents, and scented toysHoward, Skyler; Gunter, Lisa M.; Feuerbacher, Erica N. (Elsevier, 2024-09)As dogs reside in shelters awaiting adoption, it is critical that they remain behaviorally healthy. A variety of enrichment strategies improve the welfare of shelter dogs, including object (usually in the form of toys) and scent enrichment. However, for these interventions to be enriching, dogs must engage with the items and their welfare be positively affected. Thus, by identifying dogs’ preferences, shelters can improve the function of their enrichment. Using a 15 min free operant preference assessment, an assessment in which the subject is given free access to a variety of items and the duration of their engagement with each item is recorded, we investigated 34 shelter dogs’ preferences for four different toys: a stuffed toy, tennis ball, Nylabone, and flying disc. We also investigated dog’ preferences for four scents: hotdog, peppermint, duck, and an unfamiliar dog. Finally, we applied the dog's preferred scent to their most and least preferred toys to investigate whether adding their preferred scent would increase the amount of time they engaged with those items compared to unscented duplicates. During the toy preference assessment, we observed that dogs, on average, only interacted with toys 3.35 % of the 15 min session. However, we found that dogs engaged over eight times longer with the stuffed toy as compared to all other toys, F (1, 134) = 64.40, p <.001. There was a marginal effect of type during the scent assessment, F (3, 132) = 2.50, p =.062, but post hoc comparisons were not significant. When we applied each dog's preferred scent to their most and least preferred toys, we found statistically significant main effects for preference, F (1, 132) = 54.95, p <.001, and scent, F (1, 132) = 7.16, p =.008, and a significant preference-by-scent interaction, F (1, 132) = 4.66, p =.033. The addition of scent increased engagement with both toys, such that dogs spent 4.2 and 13.7 times more seconds with their most and least preferred toys, respectively. In addition to our results aligning with prior research demonstrating that dogs prefer soft versus hard toys, these findings suggest that combining objects and scents can increase dogs’ engagement with enrichment and may be especially impactful when providing shelter dogs with less preferred objects, such as hard toys.