School of Plant and Environmental Sciences
Permanent URI for this community
SPES was formed in 2017 from three departments: Crop and Soil Environmental Sciences; Horticulture; and Plant Pathology, Physiology, and Weed Science.
Browse
Browsing School of Plant and Environmental Sciences by Author "Abeysekara, Nilwala S."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Mining germplasm panels and phenotypic datasets to identify loci for resistance to Phytophthora sojae in soybeanVan, Kyujung; Rolling, William; Biyashev, Ruslan M.; Matthiesen, Rashelle L.; Abeysekara, Nilwala S.; Robertson, Alison E.; Veney, Deloris J.; Dorrance, Anne E.; McHale, Leah K.; Saghai-Maroof, Mohammad A. (Wiley, 2020-11-16)Phytophthora sojae causes Phytophthora root and stem rot of soybean and has been primarily managed through deployment of qualitative Resistance to P. sojae genes (Rps genes). The effectiveness of each individual or combination of Rps gene(s) depends on the diversity and pathotypes of the P. sojae populations present. Due to the complex nature of P. sojae populations, identification of more novel Rps genes is needed. In this study, phenotypic data from previous studies of 16 panels of plant introductions (PIs) were analyzed. Panels 1 and 2 consisted of 448 Glycine max and 520 G. soja, which had been evaluated for Rps gene response with a combination of P. sojae isolates. Panels 3 and 4 consisted of 429 and 460 G. max PIs, respectively, which had been evaluated using individual P. sojae isolates with complex virulence pathotypes. Finally, Panels 5–16 (376 G. max PIs) consisted of data deposited in the USDA Soybean Germplasm Collection from evaluations with 12 races of P. sojae. Using these panels, genome-wide association (GWA) analyses were carried out by combining phenotypic and SoySNP50K genotypic data. GWA models identified two, two, six, and seven novel Rps loci with Panels 1, 2, 3, and 4, respectively. A total of 58 novel Rps loci were identified using Panels 5–16. Genetic and phenotypic dissection of these loci may lead to the characterization of novel Rps genes that can be effectively deployed in new soybean cultivars against diverse P. sojae populations.