School of Plant and Environmental Sciences
Permanent URI for this community
SPES was formed in 2017 from three departments: Crop and Soil Environmental Sciences; Horticulture; and Plant Pathology, Physiology, and Weed Science.
Browse
Browsing School of Plant and Environmental Sciences by Title
Now showing 1 - 20 of 1423
Results Per Page
Sort Options
- 1983 Summary of Weed Control Trials for Agronomic CropsHagood, Edward Scott (Virginia Tech, 1983)This publication contains a summary of selected research trials conducted in 1983 in the area of agronomic crop weed control. It is intended as a means of sharing preliminary results with industry cooperators and weed scientists in adjacent states.
- 2008 Powell River Project Research and Education Program Reports(Powell River Project Research and Education Center, 2008)
- The 2008 Virginia Corn Silage Hybrid TrialsJones, Brian Paul; Behl, Harry D.; Rucker, Elizabeth; Thomason, Wade E. (Virginia Cooperative Extension, 2008)Discusses the results of performance trials from commercial corn hybrids produced for silage at four Virginia locations in 2008.
- 2009 Powell River Project Research and Education Program Reports(Powell River Project Research and Education Center, 2009)
- 2009-2010 Performance of Sorghum Hybrids in the Virginia-Carolina RegionBalota, Maria; Holshouser, David L.; Dahlberg, Jeff; Padgett, Shelee (Virginia Cooperative Extension, 2011)This report presents 2009-2010 crop data for Sorghum varieties in North Carolina and Virginia, including data on planting and harvest dates, soil type, irrigation, weed management, nutrient management, pest and disease control, and weather conditions
- 2009-2011 Performance of Sorghum Hybrids in the Virginia-Carolina RegionBalota, Maria; Herbert, D. Ames Jr.; Holshouser, David L.; Dahlberg, Jeff (Virginia Cooperative Extension, 2013)This report presents 2009-2011 crop data for Sorghum varieties in North Carolina and Virginia, including data on planting and harvest dates, soil type, irrigation, weed management, nutrient management, pest and disease control, and weather conditions
- 2010 Powell River Project Research and Education Program Reports(Powell River Project Research and Education Center, 2010)
- 2014 Virginia On-Farm Corn Test PlotsBalderson, T. Keith; Chappell, Glenn F.; Flanagan, Roy; Lawrence, Watson; Maxey, Laura Michele; Moore, David M.; Romelczyk, Stephanie; Slade, Glenn; Toulson, Landre; Thomason, Wade E. (Virginia Cooperative Extension, 2014-12-11)These demonstration and replicated studies provide information that can be used by Virginia corn growers to make better management decisions on their farms. Refer to individual results for more details.
- A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal HealthShea, Zachary; Ogando do Granja, Matheus; Fletcher, Elizabeth B.; Zheng, Yaojie; Bewick, Patrick; Wang, Zhibo; Singer, William M.; Zhang, Bo (MDPI, 2024-05-01)The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources—soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security.
- Accelerated senescence and nitrogen remobilization in flag leaves enhance nitrogen use efficiency in soft red winter wheatAlpuerto, Jasper B.; Brasier, Kyle G.; Griffey, Carl A.; Thomason, Wade E.; Fukao, Takeshi (2021-01)Wheat (Triticum aestivum L.) production requires a large amount of nitrogen (N) supply because growers aim to achieve high grain yield and appropriate grain protein content simultaneously. A comprehensive understanding of the mechanisms that underpin efficient N usage at limited N in wheat can facilitate the development of new N-saving varieties in this major crop. Here, we performed comparative analysis of flag leaf responses to N availability in soft red winter wheat with contrasting N use efficiency (NUE); VA08MAS-369 (high NUE) and VA07W-415 (low NUE). This study demonstrated that accelerated senescence along with enhanced breakdown of protein and starch in flag leaves was correlated with higher grain yield, NUE for grain yield, and NUE for grain protein under N limitation. The more dramatic reductions in flag leaf N compounds and carbohydrate reserves in VA08MAS-369 were linked with significantly elevated expression of genes and enzymes associated with these metabolic pathways in this high NUE genotype. Consistent with the gene expression data, nitrate reductase, glutamine synthetase, and NAD-dependent glutamate dehydrogenase activities were highly induced under limited N in VA08MAS-369. It was previously reported that accelerated senescence contributes to increased grain protein content in wheat under regular N supply. This study provides molecular and physiological evidence that vigorous senescence and N remobilization also benefit grain yield under N deprivation.
- Accessing Virginia’s Retail Market Sector: Fresh Produce Food Safety ConsiderationsVallotton, Amber D.; Battah, Alexandra; Knox, Ryan; Vargo, Adrianna; Archibald, Thomas G.; Boyer, Renee R.; Cook, Natalie E.; Drape, Tiffany A. (Virginia Cooperative Extension, 2017-11-27)Despite the growing demand and support for local food, there can often be significant barriers for growers trying to tap into new markets, given specific food safety expectations, policies, and requirements. This trend is particularly true for institutional buyers, who are often constrained by far-reaching institutional and/or corporate policies. While there are lots of market opportunities in Virginia, navigating the landscape for growers can be daunting, since buyer food safety requirements are not a “one size fits all” standard for all markets. To better understand current expectations and perceptions across multiple market sectors in Virginia, and help producers better align their on-farm practices with these marketplaces, the Fresh Produce Food Safety Team conducted a state-wide market assessment survey in 2015-2016. The purpose of this factsheet is to provide you with the results of that work, especially if you are considering selling produce to retailers.
- Accession-Level Differentiation of Urushiol Levels, and Identification of Cardanols in Nascent Emerged Poison Ivy SeedlingsLott, Aneirin A.; Baklajian, Emily R.; Dickinson, Christopher C.; Collakova, Eva; Jelesko, John G. (MDPI, 2019-11-20)Poison ivy (Toxicodendron radicans (L.) Kuntze) shows accession-level differentiation in a variety of morphometric traits, suggesting local adaptation. To investigate whether the presumed defense compound urushiol also demonstrates accession-level accumulation differences, in vitro nascent germinated poison ivy seedlings from geographically isolated populations were germinated in vitro and then assayed for known urushiol congener accumulation levels. Significant accession-level differences in the accumulation levels of total C15- and C17-, total C15-, total C17-, specific C15 congeners, and specific C17 congeners of urushiol were identified. In addition, hereto novel C15- and C17-urushiol isomers were identified as well. Cardanols are assumed to be the penultimate metabolites giving rise to urushiols, but this assumption was not previously empirically validated. C15-cardanol congeners and isomers corresponding to expected substrates needed to produce the observed C15-urushiol congeners and isomers were identified in the same poison ivy seedling extracts. Total C15-cardanol and C15-cardanol congeners also showed significant accession-level differences. Based on the observed C15-cardanol congeners in poison ivy, the penultimate step in urushiol biosynthesis was proposed to be a cardanol-specific hydroxylase activity.
- The Accuracy of Genomic Prediction between Environments and Populations for Soft Wheat TraitsHuang, Mao; Ward, Brian P.; Griffey, Carl A.; Van Sanford, David A.; McKendry, Anne; Brown-Guedira, Gina L.; Tyagi, Priyanka; Sneller, Clay H. (2018-12)Genomic selection (GS) uses training population (TP) data to estimate the value of lines in a selection population. In breeding, the TP and selection population are often grown in different environments, which can cause low prediction accuracy when the correlation of genetic effects between the environments is low. Subsets of TP data may be more predictive than using all TP data. Our objectives were (i) to evaluate the effect of using subsets of TP data on GS accuracy between environments, and (ii) to assess the accuracy of models incorporating marker x environment interaction (MEI). Two wheat (Triticum aestivum L.) populations were phenotyped for 11 traits in independent environments and genotyped with single-nucleotide polymorphism markers. Within each population trait combination, environments were clustered. Data from one duster were used as the TP to predict the value of the same lines in the other cluster(s) of environments. Models were built using all TP data or subsets of markers selected for their effect and stability. The GS accuracy using all TP data was >0.25 for 9 of 11 traits. The between-environment accuracy was generally greatest using a subset of stable and significant markers; accuracy increased up to 48% relative to using all TP data. We also assessed accuracy using each population as the TP and the other as the selection population. Using subsets of TP data or the MEI models did not improve accuracy between populations. Using optimized subsets of markers within a population can improve GS accuracy by reducing noise in the prediction data set.
- Adaptive constraints at the range edge of a widespread and expanding invasive plantFletcher, Rebecca A.; Atwater, Daniel Z.; Haak, David C.; Bagavathiannan, Muthukumar; DiTommaso, Antonio; Lehnhoff, Erik; Paterson, Andrew H.; Auckland, Susan; Govindasamy, Prabhu; Lemke, Cornelia; Morris, Edward; Rainville, Lisa; Barney, Jacob N. (Oxford University Press, 2023-11-05)Identifying the factors that facilitate and limit invasive species' range expansion has both practical and theoretical importance, especially at the range edges. Here, we used reciprocal common garden experiments spanning the North/South and East/West range that include the North American core, intermediate and range edges of the globally invasive plant, Johnsongrass (Sorghum halepense) to investigate the interplay of climate, biotic interactions (i.e. competition) and patterns of adaptation. Our results suggest that the rapid range expansion of Johnsongrass into diverse environments across wide geographies occurred largely without local adaptation, but that further range expansion may be restricted by a fitness trade-off that limits population growth at the range edge. Interestingly, plant competition strongly dampened Johnsongrass growth but did not change the rank order performance of populations within a garden, though this varied among gardens (climates). Our findings highlight the importance of including the range edge when studying the range dynamics of invasive species, especially as we try to understand how invasive species will respond to accelerating global changes.
- Advances in Ecohydrology for Water Resources Optimization in Arid and Semi-Arid AreasCastellini, Mirko; Di Prima, Simone; Stewart, Ryan D.; Biddoccu, Marcella; Rahmati, Mehdi; Alagna, Vincenzo (MDPI, 2022-06-07)Conserving water resources is a current challenge that will become increasingly urgent in future due to climate change. The arid and semi-arid areas of the globe are expected to be particularly affected by changes in water availability. Consequently, advances in ecohydrology sciences, i.e., the interplay between ecological and hydrological processes, are necessary to enhance the understanding of the critical zone, optimize water resources’ usage in arid and semi-arid areas, and mitigate climate change. This Special Issue (SI) collected 10 original contributions on sustainable land management and the optimization of water resources in fragile environments that are at elevated risk due to climate change. In this context, the topics mainly concern transpiration, evapotranspiration, groundwater recharge, deep percolation, and related issues. The collection of manuscripts presented in this SI represents knowledge of ecohydrology. It is expected that ecohydrology will have increasing applications in the future. Therefore, it is realistic to assume that efforts to increase environmental sustainability and socio-economic development, with water as a central theme, will have a greater chance of success.
- Aerial high-throughput phenotyping of peanut leaf area index and lateral growthSarkar, Sayantan; Cazenave, Alexandre-Brice; Oakes, Joseph C.; McCall, David S.; Thomason, Wade E.; Abbott, A. Lynn; Balota, Maria (Springer Nature, 2021-11-04)Leaf area index (LAI) is the ratio of the total one-sided leaf area to the ground area, whereas lateral growth (LG) is the measure of canopy expansion. They are indicators for light capture, plant growth, and yield. Although LAI and LG can be directly measured, this is time consuming. Healthy leaves absorb in the blue and red, and reflect in the green regions of the electromagnetic spectrum. Aerial high-throughput phenotyping (HTP) may enable rapid acquisition of LAI and LG from leaf reflectance in these regions. In this paper, we report novel models to estimate peanut (Arachis hypogaea L.) LAI and LG from vegetation indices (VIs) derived relatively fast and inexpensively from the red, green, and blue (RGB) leaf reflectance collected with an unmanned aerial vehicle (UAV). In addition, we evaluate the models’ suitability to identify phenotypic variation for LAI and LG and predict pod yield from early season estimated LAI and LG. The study included 18 peanut genotypes for model training in 2017, and 8 genotypes for model validation in 2019. The VIs included the blue green index (BGI), red-green ratio (RGR), normalized plant pigment ratio (NPPR), normalized green red difference index (NGRDI), normalized chlorophyll pigment index (NCPI), and plant pigment ratio (PPR). The models used multiple linear and artificial neural network (ANN) regression, and their predictive accuracy ranged from 84 to 97%, depending on the VIs combinations used in the models. The results concluded that the new models were time- and cost-effective for estimation of LAI and LG, and accessible for use in phenotypic selection of peanuts with desirable LAI, LG and pod yield.
- An aeroponic culture system for the study of root herbivory on Arabidopsis thalianaVaughan, Martha M.; Tholl, Dorothea; Tokuhisa, James G. (Biomed Central, 2011-03-10)Background Plant defense against herbivory has been studied primarily in aerial tissues. However, complex defense mechanisms have evolved in all parts of the plant to combat herbivore attack and these mechanisms are likely to differ in the aerial and subterranean environment. Research investigating defense responses belowground has been hindered by experimental difficulties associated with the accessibility and quality of root tissue and the lack of bioassays using model plants with altered defense profiles. Results We have developed an aeroponic culture system based on a calcined clay substrate that allows insect herbivores to feed on plant roots while providing easy recovery of the root tissue. The culture method was validated by a root-herbivore system developed for Arabidopsis thaliana and the herbivore Bradysia spp. (fungus gnat). Arabidopsis root mass obtained from aeroponically grown plants was comparable to that from other culture systems, and the plants were morphologically normal. Bradysia larvae caused considerable root damage resulting in reduced root biomass and water absorption. After feeding on the aeroponically grown root tissue, the larvae pupated and emerged as adults. Root damage of mature plants cultivated in aeroponic substrate was compared to that of Arabidopsis seedlings grown in potting mix. Seedlings were notably more susceptible to Bradysia feeding than mature plants and showed decreased overall growth and survival rates. Conclusions A root-herbivore system consisting of Arabidopsis thaliana and larvae of the opportunistic herbivore Bradysia spp. has been established that mimics herbivory in the rhizosphere. Bradysia infestation of Arabidopsis grown in this culture system significantly affects plant performance. The culture method will allow simple profiling and in vivo functional analysis of root defenses such as chemical defense metabolites that are released in response to belowground insect attack.
- Agronomy HandbookBrann, Daniel Edward; Abaye, Azenegashe Ozzie; Peterson, Paul R.; Chalmers, David R.; Whitt, David L.; Chappell, Glenn F.; Herbert, D. Ames Jr.; McNeill, Sam; Baker, James C.; Donohue, Stephen J.; Alley, Marcus M.; Evanylo, Gregory K.; Mullins, Gregory L.; Hagood, Edward Scott; Stallings, Charles C.; Umberger, Steven H.; Swann, Charles W.; Reed, David T.; Holshouser, David L. (Virginia Cooperative Extension, 2009-05-01)Provides readers with a source of agronomic information such as field crops, turfgrasses, variety selection, seed science, soil management, nutrient management and soil suitability for urban purposes that does not change frequently - pesticide and varietal information changes frequently and is therefor not included.
- AgroSeek: a system for computational analysis of environmental metagenomic data and associated metadataLiang, Xiao; Akers, Kyle; Keenum, Ishi M.; Wind, Lauren L.; Gupta, Suraj; Chen, Chaoqi; Aldaihani, Reem; Pruden, Amy; Zhang, Liqing; Knowlton, Katharine F.; Xia, Kang; Heath, Lenwood S. (2021-03-10)Background Metagenomics is gaining attention as a powerful tool for identifying how agricultural management practices influence human and animal health, especially in terms of potential to contribute to the spread of antibiotic resistance. However, the ability to compare the distribution and prevalence of antibiotic resistance genes (ARGs) across multiple studies and environments is currently impossible without a complete re-analysis of published datasets. This challenge must be addressed for metagenomics to realize its potential for helping guide effective policy and practice measures relevant to agricultural ecosystems, for example, identifying critical control points for mitigating the spread of antibiotic resistance. Results Here we introduce AgroSeek, a centralized web-based system that provides computational tools for analysis and comparison of metagenomic data sets tailored specifically to researchers and other users in the agricultural sector interested in tracking and mitigating the spread of ARGs. AgroSeek draws from rich, user-provided metagenomic data and metadata to facilitate analysis, comparison, and prediction in a user-friendly fashion. Further, AgroSeek draws from publicly-contributed data sets to provide a point of comparison and context for data analysis. To incorporate metadata into our analysis and comparison procedures, we provide flexible metadata templates, including user-customized metadata attributes to facilitate data sharing, while maintaining the metadata in a comparable fashion for the broader user community and to support large-scale comparative and predictive analysis. Conclusion AgroSeek provides an easy-to-use tool for environmental metagenomic analysis and comparison, based on both gene annotations and associated metadata, with this initial demonstration focusing on control of antibiotic resistance in agricultural ecosystems. Agroseek creates a space for metagenomic data sharing and collaboration to assist policy makers, stakeholders, and the public in decision-making. AgroSeek is publicly-available at https://agroseek.cs.vt.edu/ .
- American (Fagus grandifolia) and European (Fagus sylvatica) BeechesNiemiera, Alexander X. (Virginia Cooperative Extension, 2018-10-04)Provides information about the physical features, growth requirements, and landscaping functions of American Beech (Fagus grandifolia) and European Beech (Fagus sylvatica)