Scholarly Articles, Institute for Particle, Nuclear and Astronomical Sciences (IPNAS)
Permanent URI for this collection
Browse
Browsing Scholarly Articles, Institute for Particle, Nuclear and Astronomical Sciences (IPNAS) by Author "de Boer, J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Mass, entropy, and holography in asymptotically de Sitter spacesBalasubramanian, V.; de Boer, J.; Minic, Djordje (American Physical Society, 2002-06-15)We propose a novel prescription for computing the boundary stress tensor and charges of asymptotically de Sitter (dS) spacetimes from data at early or late time infinity. If there is a holographic dual to dS spaces, defined analogously to the AdS/conformal field theory correspondence, our methods compute the (Euclidean) stress tensor of the dual. We compute the masses of Schwarzschild-de Sitter black holes in four and five dimensions, and the masses and angular momenta of Kerr-de Sitter spaces in three dimensions. All these spaces are less massive than de Sitter space, a fact which we use to qualitatively and quantitatively relate de Sitter entropy to the degeneracy of possible dual field theories. Our results in general dimensions lead to a conjecture: Any asymptotically de Sitter spacetime with mass greater than de Sitter space has a cosmological singularity. Finally, if a dual to de Sitter space exists, the trace of our stress tensor computes the renormalized group (RG) equation of the dual field theory. Cosmological time evolution corresponds to RG evolution in the dual. The RG evolution of the c function is then related to changes in accessible degrees of freedom in an expanding universe.
- α-states in de Sitter spacede Boer, J.; Jejjala, V.; Minic, Djordje (American Physical Society, 2005-02)Field theory in de Sitter space admits a one-parameter family of vacua determined by a superselection parameter alpha. Of these vacua, the Euclidean vacuum uniquely extrapolates to the vacuum of flat Minkowski space. States which resemble the alpha-vacua can be constructed as excitations above the Euclidean vacuum. Such states have modes alpha(k) which decay faster that k((1-d)/2). Fields in such states exhibit nonlocal correlations when examined from the perspective of fields in the Euclidean vacuum. The dynamics of such entangled states are fully consistent. If an alpha-state with properties that interpolate between an alpha-vacuum and the Euclidean vacuum were the initial condition for inflation, a signature for this may be found in a momentum dependent correction to the inflationary power spectrum. The functional formalism, which provides the tool for examining physics in an alpha-state, extends to fields of other spin. In particular, the extension to spin-2 may proffer a new class of infrared modifications to gravitational interactions. The implications of superselection sectors for the landscape of string vacua are briefly discussed.