Scholarly Works, Center for Space Science and Engineering Research (Space@VT)
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Center for Space Science and Engineering Research (Space@VT) by Author "Center for Space Science and Engineering Research"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Effect of polyoxymethylene (POM-H Delrin) off-gassing within the Pandora head sensor on direct-sun and multi-axis formaldehyde column measurements in 2016-2019Spinei, Elena; Tiefengraber, Martin; Mueller, Moritz; Gebetsberger, Manuel; Cede, Alexander; Valin, Luke; Szykman, James; Whitehill, Andrew; Kotsakis, Alexander; Santos, Fernando; Abbuhasan, Nader; Zhao, Xiaoyi; Fioletov, Vitali; Lee, Sum Chi; Swap, Robert (2021-01-28)Analysis of formaldehyde measurements by the Pandora spectrometer systems between 2016 and 2019 suggested that there was a temperature-dependent process inside the Pandora head sensor that emitted formaldehyde. Some parts in the head sensor were manufactured from the thermal plastic polyoxymethylene homopolymer (E.I. Du Pont de Nemour & Co., USA; POM-H Delrin (R)) and were responsible for formaldehyde production. Laboratory analysis of the four Pandora head sensors showed that internal formaldehyde production had exponential temperature dependence with a damping coefficient of 0.0911 +/- 0.0024 degrees C-1 and the exponential function amplitude ranging from 0.0041 to 0.049 DU. No apparent dependency on the head sensor age and heating and cooling rates was detected. The total amount of formaldehyde internally generated by the POM-H Delrin components and contributing to the direct-sun measurements were estimated based on the head sensor temperature and solar zenith angle of the measurements. Measurements in winter, during colder (< 10 degrees C) days in general, and at high solar zenith angles (> 75 degrees) were minimally impacted. Measurements during hot days (> 28 degrees C) and small solar zenith angles had up to 1 DU (2.69 x 10(16 )molec. cm(-2)) contribution from POM-H Delrin parts. Multi-axis differential slant column densities were minimally impacted (< 0.01 DU) due to the reference spectrum being collected within a short time period with a small difference in head sensor temperature. Three new POM-H Delrin free Pandora head sensors (manufactured in summer 2019) were evaluated for temperature-dependent attenuation across the entire spectral range (300 to 530 nm). No formaldehyde absorption or any other absorption above the instrumental noise was observed across the entire spectral range.
- Improving Neutral Density Predictions Using Exospheric Temperatures Calculated on a Geodesic, Polyhedral GridWeimer, Daniel R.; Mehta, P. M.; Tobiska, W. K.; Doornbos, E.; Mlynczak, M. G.; Drob, Douglas P.; Emmert, J. T. (2019-12-10)A new model of exospheric temperatures has been developed, with the objective of predicting global values with greater spatial and temporal accuracy. From these temperatures, the neutral densities in the thermosphere can be calculated, through use of the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Extended (NRLMSISE-00) model. The exospheric temperature model is derived from measurements of the neutral densities on several satellites. These data were sorted into triangular cells on a geodesic grid, based on location. Prediction equations are derived for each grid cell using least error fits. Several versions of the model equations have been tested, using parameters such as the date, time, solar radiation, and nitric oxide emissions, as measured with the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. Accuracy is improved with the addition of the total Poynting flux flowing into the polar regions, from an empirical model that uses the solar wind velocity and interplanetary magnetic field. Given such inputs, the model can produce global maps of the exospheric temperature. These maps show variations in the polar regions that are strongly modulated by the time of day, due to the daily rotation of the magnetic poles. For convenience the new model is referred to with the acronym EXTEMPLAR (EXospheric TEMperatures on a PoLyhedrAl gRid). Neutral densities computed from the EXTEMPLAR-NRLMSISE-00 models combined are found to produce very good results when compared with measured values.
- Testing the electrodynamic method to derive height-integrated ionospheric conductancesWeimer, Daniel R.; Edwards, Thom (2021-01-14)We have used empirical models for electric potentials and the magnetic fields both in space and on the ground to obtain maps of the height-integrated Pedersen and Hall ionospheric conductivities at high latitudes. This calculation required use of both "curl-free" and "divergencefree" components of the ionospheric currents, with the former obtained from magnetic fields that are used in a model of the field-aligned currents. The second component is from the equivalent current, usually associated with Hall currents, derived from the ground-level magnetic field. Conductances were calculated for varying combinations of the interplanetary magnetic field (IMF) magnitude and orientation angle, as well as the dipole tilt angle. The results show that reversing the sign of the Y component of the IMF produces substantially different conductivity patterns. The Hall conductivities are largest on the dawn side in the upward, Region 2 field-aligned currents. Low electric field strengths in the Harang discontinuity lead to inconclusive results near midnight. Calculations of the Joule heating, obtained from the electric field and both components of the ionospheric current, are compared with the Poynting flux in space. The maps show some differences, while their integrated totals match to within 1 %. Some of the Poynting flux that enters the polar cap is dissipated as Joule heating within the auroral ovals, where the conductivity is greater.
- Trends in the polar summer mesosphere temperature and pressure altitude from satellite observationsBailey, Scott M.; Thurairajah, Brentha; Hervig, Mark E.; Siskind, David E.; Russell, James M. III; Gordley, Larry L. (2021-09-01)Time series of mesospheric temperature and pressure altitude are produced through combining observations by the Halogen Occultation Experiment (HALOE), Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER), and Solar Occultation for Ice Experiment (SOFIE) instruments. Time series of both temperature and pressure altitude are produced through the combination of HALOE/SABER providing 29 years in length and HALOE/SOFIE providing 22 years in length. The different sampling of the three instruments constrains the time series to June in the northern hemisphere and December in the southern hemisphere and 6470 degrees in both hemispheres. We interpret the time series by fitting them to simple descriptions of the variations including solar, intra-hemispheric, inter-hemispheric, and linear trend terms. The inferred intra- and inter-hemispheric terms show that dynamical influences rival solar variability in the mesosphere. We find a robust result that the mesosphere is in general cooling at most altitudes at approximately 1-2 K per decade in response to greenhouse gas increases. That cooling leads to a shrinking of the atmosphere on the order of 100-200 m per decade. The shrinking leads to a reduction in cooling and eventually a warming near 0.005 hPa due to hydrostatic contraction.