Strategic Growth Area: Creativity and Innovation (C&I)
Permanent URI for this collection
C&I is the refinement of two early SGAs: Creative Technologies and Experiences and Innovation and Entrepreneurship. C&I melds the exploration of innovative technologies and the design of creative experiences with best practices for developing impact-driven and meaningful outcomes and solutions. C&I builds and strengthens creative communities; supports economic development; and enhances quality of life through self-sustaining and entrepreneurial activities.
The Creative Technologies and Experiences (CT+E) Strategic Growth Area develops 21st-century transdisciplinarians who are well-versed in the unique processes of collaborative environments and whose creative portfolios and capstone projects generate new, or address an existing, real-world opportunity. CT+E exists at the technology-mediated intersection of the arts, design, science, and engineering. Participants are uniquely empowered to focus on and to holistically explore opportunities while developing an integrative approach to thinking and problem solving.
The Innovation and Entrepreneurship SGA was described as Working across all disciplines, we strive to address problems, innovate solutions, and make an impact through entrepreneurial ventures... We create an atmosphere and culture that unleashes creativity, sparks vision and innovation, and teaches the governing principles that are the foundation of every successful progressive enterprise. Our training, investments, and activities include discovery science, applied science, and processes related to commercialization/implementation and management – all in a global context and consistent with ethical principles.
Browse
Browsing Strategic Growth Area: Creativity and Innovation (C&I) by Author "Bowman, Douglas A."
Results Per Page
Sort Options
- 3D Sketching and Flexible Input for Surface Design: A Case StudyLeal, Anamary; Bowman, Douglas A. (Brazilian Computing Society (SBC), 2014)Designing three-dimensional (3D) surfaces is difficult in both the physical world and in 3D modeling software, requiring background knowledge and skill. The goal of this work is to make 3D surface design easier and more accessible through natural and tangible 3D interaction, taking advantage of users' proprioceptive senses to help them understand 3D position, orientation, size, and shape. We hypothesize that flexible input based on fabric may be suitable for 3D surface design, because it can be molded and folded into a desired shape, and because it can be used as a dynamic flexible brush for 3D sketching. Fabric3D, an interactive surface design system based on 3D sketching with flexible input, explored this hypothesis. Through a longitudinal five-part study in which three domain experts used Fabric3D, we gained insight into the use of flexible input and 3D sketching for surface design in various domains.
- Cooperative Object Manipulation in Collaborative Virtual EnvironmentsPinho, Marcio S.; Bowman, Douglas A.; Dal Sasso Freitas, Carla M. (Springer Nature, 2008-06-20)Cooperative manipulation refers to the simultaneous manipulation of a virtual object by multiple users in an immersive virtual environment (VE). In this work, we present techniques for cooperative manipulation based on existing single-user techniques. We discuss methods of combining simultaneous user actions, based on the separation of degrees of freedom between two users, and the awareness tools used to provide the necessary knowledge of the partner activities during the cooperative interaction process. We also present a framework for supporting the development of cooperative manipulation techniques, which are based on rules for combining single user interaction techniques. Finally, we report an evaluation of cooperative manipulation scenarios, the results indicating that, in certain situations, cooperative manipulation is more efficient and usable than single user manipulation.
- Development of a Collaborative Design Tool for Structural Analysis in an Immersive Virtual EnvironmentSetareh, Mehdi; Bowman, Douglas A.; Tumati, P. (Department of Computer Science, Virginia Polytechnic Institute & State University, 2001)This paper contains the results of an on-going collaborative research effort by the departments of Architecture and Computer Science of Virginia Polytechnic Institute and State University, U.S.A., to develop a computer visualization application for the structural analysis of building structures. The VIRTUAL-SAP computer program is being developed by linking PC-SAP4 (Structural Analysis Program), and virtual environment software developed using the SVE (Simple Virtual Environment) library. VIRTUAL-SAP is intended for use as a collaborative design tool to facilitate the interaction between the architect, engineer, and contractor by providing an environment that they can walk-through and observe the consequences of design alterations. Therefore, this software can be used as an interactive computer-aided analysis of building systems.
- Effects of Active Exploration and Passive Observation on Spatial Learning in a CAVEMelanson, Brian; Kelso, John; Bowman, Douglas A. (Department of Computer Science, Virginia Polytechnic Institute & State University, 2002-07-01)This experiment was a modification of Paul N. Wilson's 1999 study entitled "Active Exploration of a Virtual Environment Does Not Promote Orientation or Memory for Objects." It was hoped that changing the immersion level from a standard desktop monitor to a more immersive CAVE environment would change the results of this experiment. All subjects explored a three-dimensional virtual environment in a CAVE. Active subjects were given controls to choose their own path and explore the environment. Passive subjects watched a playback tour through the virtual environment. A unique active subject determined the tour for each passive subject. Each subject was asked to remember the objects they saw, their locations, and the floor plan of the environment. Afterward, subjects were asked to indicate the direction to another location that was not visible from the current location. Other object memory tests required recalling the location of each object and indicating it on a plan view of the environment. Similar to Wilson's experiment, this experiment yielded no significant indication that active exploration or passive observation changes the level of spatial learning.
- The Effects of Higher Levels of Immersion on Procedure Memorization Performance and Implications for Educational Virtual EnvironmentsRagan, Eric D.; Sowndararajan, Ajith; Kopper, Regis; Bowman, Douglas A. (MIT Press, 2010-12-01)Researchers have proposed that immersion could have advantages for tasks involving abstract mental activities, such as conceptual learning; however, there are few empirical results that support this idea. We hypothesized that higher levels of immersion would benefit such tasks if the mental activity could be mapped to objects or locations in a 3D environment. To investigate this hypothesis, we performed an experiment in which participants memorized procedures in a virtual environment and then attempted to recall those procedures. We aimed to understand the effects of three components of immersion on performance. The results demonstrate that a matched software field of view (SFOV), a higher physical field of view (FOV), and a higher field of regard (FOR) all contributed to more effective memorization. The best performance was achieved with a matched SFOV and either a high FOV or a high FOR, or both. In addition, our experiment demonstrated that memorization in a virtual environment could be transferred to the real world. The results suggest that, for procedure memorization tasks, increasing the level of immersion even to moderate levels, such as those found in head mounted displays (HMDs) and display walls, can improve performance significantly compared to lower levels of immersion. Hypothesizing that the performance improvements provided by higher levels of immersion can be attributed to enhanced spatial cues, we discuss the values and limitations of supplementing conceptual information with spatial information in educational VR.
- Force Push: Exploring Expressive Gesture-to-Force Mappings for Remote Object Manipulation in Virtual RealityYu, Run; Bowman, Douglas A. (Frontiers Media, 2018-09-28)This paper presents Force Push, a novel gesture-based interaction technique for remote object manipulation in virtual reality (VR). Inspired by the design of magic powers in popular culture, Force Push uses intuitive hand gestures to drive physics-based movement of the object. Using a novel algorithm that dynamically maps rich features of hand gestures to the properties of the physics simulation, both coarse-grained ballisticmovements and fine-grained refinementmovements can be achieved seamlessly and naturally. An initial user study of a limited translation task showed that, although its gesture-to-force mapping is inherently harder to control than traditional position-to-position mappings, Force Push is usable even for extremely difficult tasks. Direct position-to-position control outperformed Force Push when the initial distance between the object and the target was close relative to the required accuracy; however, the gesture-based method began to show promising results when they were far away from each other. As for subjective user experience, Force Push was perceived as more natural and fun to use, even though its controllability and accuracy were thought to be inferior to direct control. This paper expands the design space of object manipulation beyond mimicking reality, and provides hints on using magical gestures and physics-based techniques for higher usability and hedonic qualities in user experience.
- Immersive Virtual Environments for University Education: Views from the ClassroomBowman, Douglas A.; Gracey, Matthew; Lucas, John F.; Setareh, Mehdi; Varadarajan, Srinidhi (Department of Computer Science, Virginia Polytechnic Institute & State University, 2003)Education has long been touted as an important application area for immersive virtual environments (VEs). VEs can allow students to visualize and interact with complex three-dimensional (3D) structures, perform virtual experiments,#157; view scenes with natural head and body movements, and experience environments that would be otherwise inaccessible because of distance (the surface of the Moon), scale (a complex molecule), or danger (a sunken ship). Many researchers have explored the use of VEs for education [1, 2], with some degree of success. However, few VE systems have been deployed for actual classroom use, and little is known about effective methods for employing VEs in real-world settings (the work of Johnson et al. is a notable exception [4]). In this paper, we describe three VE applications developed to teach university students concepts in the areas of computer graphics, building structures, and computer networking, and discuss our experience in using them as integral parts of appropriate classes at Virginia Tech. We differ from Johnson et al. in our focus on postsecondary education and in our use of VEs as tools within a traditional lecture-based class. We present our observations of what worked and what did not, and offer guidelines for others wishing to incorporate VEs into the classroom.
- Move the Object or Move Myself? Walking vs. Manipulation for the Examination of 3D Scientific DataLages, Wallace S.; Bowman, Douglas A. (Frontiers, 2018-07-10)Physical walking is consistently considered a natural and intuitive way to acquire viewpoints in a virtual environment. However, research findings also show that walking requires cognitive resources. To understand how this tradeoff affects the interaction design for virtual environments; we evaluated the performance of 32 participants, ranging from 18 to 44 years old, in a demanding visual and spatial task. Participants wearing a virtual reality (VR) headset counted features in a complex 3D structure while walking or while using a 3D interaction technique for manipulation. Our results indicate that the relative performance of the interfaces depends on the spatial ability and game experience of the participants. Participants with previous game experience but low spatial ability performed better using the manipulation technique. However, walking enabled higher performance for participants with low spatial ability and without significant game experience. These findings suggest that the optimal design choices for demanding visual tasks in VR should consider both controller experience and the spatial ability of the target users.
- Pinch Keyboard: Natural Text Input for Immersive Virtual EnvironmentsBowman, Douglas A.; Ly, Vinh Q.; Campbell, Joshua M. (Department of Computer Science, Virginia Polytechnic Institute & State University, 2001)Text entry may be needed for system control tasks in immersive virtual environments, but no efficient and usable techniques exist. We present the pinch keyboard interaction technique, which simulates a standard QWERTY keyboard using Pinch Gloves™ and 6 DOF trackers. The system includes visual and auditory feedback and a simple method of calibration.
- Relative Effects of Real-world and Virtual-World Latency on an Augmented Reality Training Task: An AR Simulation ExperimentNabiyouni, Mahdi; Scirbo, Siroberto; Bowman, Douglas A.; Höllerer, Tobias (Frontiers Media, 2017-01-30)In augmented reality (AR), virtual objects and information are overlaid onto the user’s view of the physical world and can appear to become part of the real-world. Accurate registration of virtual objects is a key requirement for an effective and natural AR system, but misregistration can break the illusion of virtual objects being part of the real-world and disrupt immersion. End-to-end system latency severely impacts the quality of AR registration. In this research, we present a controlled study that aims at a deeper understanding of the effects of latency on virtual and real-world imagery and its influences on task performance in an AR training task. We utilize an AR simulation approach, in which an outdoor AR training task is simulated in a high-fidelity virtual reality (VR) system. The real and augmented portions of the AR training scenarios are simulated in VR, affording us detailed control over a variety of immersion parameters and the ability to explore the effects of different types of simulated latency. We utilized a representative task inspired by outdoor AR military training systems to compare various AR system configurations, including optical see-through and video see-through setups with both matched and unmatched levels of real and virtual objects latency. Our findings indicate that users are able to perform significantly better when virtual and real-world latencies are matched (as in the case of simulated video see-through AR with perfect augmentation-to-real-world registration). Unequal levels of latency led to reduction in performance, even when overall latency levels were lower compared to the matched case. The relative results hold up with increased overall latency.
- Testbed evaluation of virtual environment interaction techniquesBowman, Douglas A.; Johnson, D. B.; Hodges, Larry F. (MIT Press, 2001-02-01)As immersive virtual environment (VE) applications become more complex, it is clear that we need a firm understanding of the principles of VE interaction. In particular, designers need guidance in choosing three-dimensional interaction techniques. In this paper, we present a systematic approach, testbed evaluation, for the assessment of interaction techniques for VEs. Testbed evaluation uses formal frameworks and formal experiments with multiple independent and dependent variables to obtain a wide range of performance data for VE interaction techniques. We present two testbed experiments, covering techniques for the common VE tasks of travel and object selection/manipulation. The results of these experiments allow us to form general guidelines for VE interaction and to provide an empirical basis for choosing interaction techniques in VE applications. Evaluation of a real-world VE system based on the testbed results indicates that this approach can produce substantial improvements in usability.
- Testbed Evaluation of Virtual Environment Interaction TechniquesBowman, Douglas A.; Johnson, D.; Hodges, Larry F. (Department of Computer Science, Virginia Polytechnic Institute & State University, 2001)Testbed Evaluation of Virtual Environment Interaction Techniques
- Using Pinch Gloves(TM) for both Natural and Abstract Interaction Techniques in Virtual EnvironmentsBowman, Douglas A.; Wingrave, Chadwick A.; Campbell, J. B.; Ly, Vinh Q. (Department of Computer Science, Virginia Polytechnic Institute & State University, 2001)Usable three-dimensional (3D) interaction techniques are difficult to design, implement, and evaluate. One reason for this is a poor understanding of the advantages and disadvantages of the wide range of 3D input devices, and of the mapping between input devices and interaction techniques. We present an analysis of Pinch Gloves™ and their use as input devices for virtual environments (VEs). We have developed a number of novel and usable interaction techniques for VEs using the gloves, including a menu system, a technique for text input, and a two-handed navigation technique. User studies have indicated the usability and utility of these techniques.