Strategic Growth Area: Creativity and Innovation (C&I)
Permanent URI for this collection
C&I is the refinement of two early SGAs: Creative Technologies and Experiences and Innovation and Entrepreneurship. C&I melds the exploration of innovative technologies and the design of creative experiences with best practices for developing impact-driven and meaningful outcomes and solutions. C&I builds and strengthens creative communities; supports economic development; and enhances quality of life through self-sustaining and entrepreneurial activities.
The Creative Technologies and Experiences (CT+E) Strategic Growth Area develops 21st-century transdisciplinarians who are well-versed in the unique processes of collaborative environments and whose creative portfolios and capstone projects generate new, or address an existing, real-world opportunity. CT+E exists at the technology-mediated intersection of the arts, design, science, and engineering. Participants are uniquely empowered to focus on and to holistically explore opportunities while developing an integrative approach to thinking and problem solving.
The Innovation and Entrepreneurship SGA was described as Working across all disciplines, we strive to address problems, innovate solutions, and make an impact through entrepreneurial ventures... We create an atmosphere and culture that unleashes creativity, sparks vision and innovation, and teaches the governing principles that are the foundation of every successful progressive enterprise. Our training, investments, and activities include discovery science, applied science, and processes related to commercialization/implementation and management – all in a global context and consistent with ethical principles.
Browse
Browsing Strategic Growth Area: Creativity and Innovation (C&I) by Title
Results Per Page
Sort Options
- 2012 CPES Annual ReportCenter for Power Electronics Systems (Virginia Tech. Center for Power Electronics Systems, 2012)The Center for Power Electronics Systems at Virginia Tech is a research center dedicated to improving electrical power processing and distribution that impact systems of all sizes – from battery – operated electronics to vehicles to regional and national electrical distribution systems. Our mission is to provide leadership through global collaborative research and education for creating advanced electric power processing systems of the highest value to society. CPES, with annual research expenditures about $4-5 million US dollars, has a worldwide reputation for its research advances, its work with industry, and its many talented graduates. From its background as an Engineering Research Center for the National Science Foundation during 1998 - 2008, CPES has continued to work towards making electric power processing more efficient and more exact in order to reduce energy consumption. Power electronics is the “enabling infrastructure technology” that promotes the conversion of electrical power from its raw form to the form needed by machines, motors and electronic equipment. Advances in power electronics can reduce power conversion loss and in turn increase energy efficiency of equipment and processes using electrical power. This results in increased industrial productivity and product quality. With widespread use of power electronics technology, the United States would be able to cut electrical energy consumption by 33 percent. This energy savings in the United States alone is estimated to be the equivalent of output from 840 fossil fuel based generating plants. This savings would result in enormous economic, environmental and social benefits.
- 2013 CPES Annual ReportCenter for Power Electronics Systems; Uncork-it, Inc. (Virginia Tech. Center for Power Electronics Systems, 2013)The CPES industrial consortium is designed to cultivate connectivity among researchers in academia and industry, as well as create synergy within the network of industry members. The CPES industrial consortium offers: The best mechanism to stay abreast of technological developments in power electronics; The ideal forum for networking with leadingedge companies and top-notch researchers; The CPES connection provides the competitive edge to industry members via: Access to state-of-the-art facilities, faculty expertise, top-notch students; Leveraged research funding of over $4-10 million per year; Industry influence via Industry Advisory Board and research champions; Intellectual properties with early access for Principal Plus and Principal members via CPES IPPF (Intellectual Property Protection Fund); Technology transfer made possible via special access to the Center’s multi-disciplinary team of researchers, and resulting publications, presentations and intellectual properties; Continuing education opportunities via professional short courses offered at a significant discount. The CPES industrial consortium offers the ideal forum for networking with leading-edge companies and top-notch researchers and provides the best mechanism to stay abreast of technological developments in power electronics.
- 2014 CPES Annual ReportCenter for Power Electronics Systems; Uncork-it, Inc. (Virginia Tech. Center for Power Electronics Systems, 2014)Over the past two decades, CPES has secured research funding from major industries, such as GE, Rolls-Royce, Boeing, Alstom, ABB, Toyota, Nissan, Raytheon, and MKS, as well as from government agencies including the NSF, DOE, DARPA, ONR, U.S. Army, and the U.S. Air Force, in research pursuing high-density system design. CPES has developed unique high-temperature packaging technology critical to the future powerelectronic industry. In the HDI mini-consortium, the goal of high power density will be pursued following two coupled paths, both leveraging the availability of wide-bandgap power semiconductor, as well as high-temperature passive components and ancillary functions. The switching frequency will be pushed as high as component technologies, thermal management, and reliability permit. At the same time, the maximum component temperatures will be pushed as high as component technologies, thermal management, and reliability permit. The emergence of wide‐bandgap semiconductors such as Silicon Carbide (SiC) and Gallium Nitride (GaN) makes it possible to realize power switches that operate at frequency beyond 5 MHz and temperature beyond 200° C. As the switching frequency increases, switching noise is shifted to higher frequency and can be filtered with small passive components, leading to improved power density. Higher operating temperatures enable increased power density and applications under harsh environments, such as military systems, transportation systems, and outdoor industrial and utility systems.
- 2015 CPES Annual ReportCenter for Power Electronics Systems; Uncork-it, Inc. (Virginia Tech. Center for Power Electronics Systems, 2015)In its efforts to develop power processing systems to take electricity to the next step, CPES has developed research expertise encompassing five technology areas: (1) power conversion technologies and architectures; (2) power electronics components; (3) modeling and control; (4) EMI and power quality; (5) high density integration. These technology areas target applications that include: (1) Power management for information and communications technology; (2) Point-of-load conversion for power supplies; (3) Vehicular power conversion systems; (4) Renewable energy systems. In 2015, CPES sponsored research totaled approximately $2.2 million. The following abstracts provide a quick insight to the current research efforts.
- 2016 CPES Annual ReportCenter for Power Electronics Systems; Uncork-it, Inc. (Virginia Tech. Center for Power Electronics Systems, 2016)In its effort to develop power processing systems to take electricity to the next step, CPES has cultivated research expertise encompassing five technology areas: (1) power conversion technologies and architectures; (2) power electronics components; (3) modeling and control; (4) EMI and power quality; and (5) high density integration. These technology areas target applications that include: (1) Power management for information and communications technology; (2) Point-of-load conversion for power supplies; (3) Vehicular power converter systems; and (4) High-power conversion systems. In 2016, CPES sponsored research totaled approximately $2.1 million. The following abstracts provide a quick insight to the current research efforts.
- 2017 CPES Annual ReportCenter for Power Electronics Systems; Uncork-it, Inc. (Virginia Tech. Center for Power Electronics Systems, 2017)In its effort to develop power processing systems to take electricity to the next step, CPES has cultivated research expertise encompassing five technology areas: (1) power conversion technologies and architectures; (2) power electronics components; (3) modeling and control; (4) EMI and power quality; and (5) high density integration. These technology areas target applications that include: (1) power management for information and communications technology; (2) point-of-load conversion for power supplies; (3) vehicular power converter systems; and (4) high-power conversion systems. In 2016, CPES sponsored research totaled approximately $2.4 million. The following abstracts provide a quick insight to the current research efforts.
- 2018 CPES Annual Report(Virginia Tech, 2018)In its effort to develop power processing systems to take electricity to the next step, CPES has cultivated research expertise encompassing five technology areas: (1) power conversion technologies and architectures; (2) power electronics components; (3) modeling and control; (4) EMI and power quality; and (5) high density integration. These technology areas target applications that include: (1) power management for information and communications technology; (2) point-of-load conversion for power supplies; (3) vehicular power converter systems; and (4) high-power conversion systems. In 2018, CPES sponsored research totaled approximately $2.9 million. The following abstracts provide a quick insight to the current research efforts.
- 3D Sketching and Flexible Input for Surface Design: A Case StudyLeal, Anamary; Bowman, Douglas A. (Brazilian Computing Society (SBC), 2014)Designing three-dimensional (3D) surfaces is difficult in both the physical world and in 3D modeling software, requiring background knowledge and skill. The goal of this work is to make 3D surface design easier and more accessible through natural and tangible 3D interaction, taking advantage of users' proprioceptive senses to help them understand 3D position, orientation, size, and shape. We hypothesize that flexible input based on fabric may be suitable for 3D surface design, because it can be molded and folded into a desired shape, and because it can be used as a dynamic flexible brush for 3D sketching. Fabric3D, an interactive surface design system based on 3D sketching with flexible input, explored this hypothesis. Through a longitudinal five-part study in which three domain experts used Fabric3D, we gained insight into the use of flexible input and 3D sketching for surface design in various domains.
- 3D Time-Based Aural Data Representation Using D⁴ Library’s Layer Based Amplitude Panning AlgorithmBukvic, Ivica Ico (Georgia Institute of Technology, 2016-07)The following paper introduces a new Layer Based Amplitude Panning algorithm and supporting D⁴ library of rapid prototyping tools for the 3D time-based data representation using sound. The algorithm is designed to scale and support a broad array of configurations, with particular focus on High Density Loudspeaker Arrays (HDLAs). The supporting rapid prototyping tools are designed to leverage oculocentric strategies to importing, editing, and rendering data, offering an array of innovative approaches to spatial data editing and representation through the use of sound in HDLA scenarios. The ensuing D⁴ ecosystem aims to address the shortcomings of existing approaches to spatial aural representation of data, offers unique opportunities for furthering research in the spatial data audification and sonification, as well as transportable and scalable spatial media creation and production.
- An Adaptive Actuation Mechanism for Anthropomorphic Robot HandsKontoudis, George P.; Liarokapis, Minas; Vamvoudakis, Kyriakos G.; Furukawa, Tomonari (Frontiers, 2019-07-05)This paper presents an adaptive actuation mechanism that can be employed for the development of anthropomorphic, dexterous robot hands. The tendon-driven actuation mechanism achieves both flexion/extension and adduction/abduction on the finger's metacarpophalangeal joint using two actuators. Moment arm pulleys are employed to drive the tendon laterally and achieve a simultaneous execution of abduction and flexion motion. Particular emphasis has been given to the modeling and analysis of the actuation mechanism. More specifically, the analysis determines specific values for the design parameters for desired abduction angles. Also, a model for spatial motion is provided that relates the actuation modes with the finger motions. A static balance analysis is performed for the computation of the tendon force at each joint. A model is employed for the computation of the stiffness of the rotational flexure joints. The proposed mechanism has been designed and fabricated with the hybrid deposition manufacturing technique. The efficiency of the mechanism has been validated with experiments that include the assessment of the role of friction, the computation of the reachable workspace, the assessment of the force exertion capabilities, the demonstration of the feasible motions, and the evaluation of the grasping and manipulation capabilities. An anthropomorphic robot hand equipped with the proposed actuation mechanism was also fabricated to evaluate its performance. The proposed mechanism facilitates the collaboration of actuators to increase the exerted forces, improving hand dexterity and allowing the execution of dexterous manipulation tasks.
- AffecTech-an affect-aware interactive AV ArtworkCoghlan, Niall; Jaimovich, Javier; Knapp, R. Benjamin; O’Brien, Donal; Ortiz, Miguel A. (ISEA International, 2009)New developments in real-time computing and body-worn sensor technology allow us to explore not just visible gestures using inertial sensors, but also invisible changes in an individual’s physiological state using bio-sensors (Kim & André 2008). This creates an opportunity for a more intimate interaction between the observer and technology-based art (Gonsalves 2008). We present a technical overview of the AffecTech system; a bio-signal based interactive audiovisual installation commissioned as part of the pre-ISEA symposium in November 2008. Observers were invited to sit on one of 2 sensor-enhanced chairs (Coghlan & Knapp 2008), which transmitted physiological data about the occupant to a central control system. This data was used to control and modulate interactive visuals, live video feeds and a surround sound score, with events and interactions dependent on the observers’ affective/emotional state and the disparity or similarity between the bio-signals of the chairs occupants. This technical overview is followed by an examination of the outcomes of the project, from both the artistic and technical viewpoints, with recommendations for modification in future implementations.
- Affective Feedback in a Virtual Reality based Intelligent SupermarketSaha, Deba Pratim; Martin, Thomas L.; Knapp, R. Benjamin (ACM, 2017)The probabilistic nature of the inferences in a context-aware intelligent environment (CAIE) renders them vulnerable to erroneous decisions resulting in wrong services. Learning to recognize a user’s negative reactions to such wrong services will enable a CAIE to anticipate a service’s appropriateness. We propose a framework for continuous measurement of physiology to infer a user’s negative-emotions arising from receiving wrong services, thereby implementing an implicit-feedback loop in the CAIE system. To induce such negative-emotions, in this paper, we present a virtualreality (VR) based experimental platform while collecting real-time physiological data from ambulatory wearable sensors. Results from the electrodermal activity (EDA) data analysis reveal patterns that correlate with known features of negative-emotions, indicating the possibility to infer service appropriateness from user’s reactions to a service, thereby closing an implicit-feedback loop for the CAIE.
- The Application Of Bio-inspiration To Human-centered Product DesignKennedy, B. (WIT Press, 2014)Biologically inspired design is an emerging practice based on the premise that nature holds a vast library of strategies, processes and technologies that can lead to innovative, sustainable solutions to human problems. Around the globe, scientific and engineering research efforts in Bio-inspiration have made astonishing discoveries that have impacted future possibilities in the fields of robotics, biomedical technology and material science, amongst many other examples. Yet, despite rising evidence about Biology’s relevance to innovative design, examples demonstrating specifics about how it can be applied in the near term in consumer product design are limited. This paper presents a case study wherein Bio-inspired design was used successfully as a tool to help develop novel, viable and product concepts for a packaged-goods industry client. Specifically, emphasis will be placed on how the method of ‘biologizing the problem’ contributed to redefining the parameters of the challenge, which ultimately drove the project’s success. After receiving a focused brief for reinventing the generally unpleasant experience of bathroom shower cleaning, the first round of creative ideation yielded incremental solutions based on the goal of ‘mildew removal and extermination.’ During the second round of creative ideation, after the problem had been redefined in terms of biological strategies, an entirely different set of solutions resulted from a revised goal of ‘mildew prevention.’ Such examples of problem redefinition can be propelled by a growing number of free databases like Asknature.org, which enable designers to find useful analogies between their design goals and Biological strategies. As these databases mature, product design efforts will be able to augment their creative output with improved results.
- An Architecture for Electronic TextilesJones, Mark T.; Martin, Thomas L.; Sawyer, Braden (ICST, 2008)This paper makes a case for a communication architecture for electronic textiles (e-textiles). The properties and re- quirements of e-textile garments are described and analyzed. Based on these properties, the authors make a case for em- ploying wired, digital communication as the primary on- garment communication network. The implications of this design choice for the hardware architecture for e-textiles are discussed.
- THE ART OF PROBLEM DISCOVERY: Adaptive Thinking for Innovation and GrowthMathews, Brian (Association of College and Research Libraries (ACRL), 2013-04-02)What challenges do students face in the classroom? What issues do faculty encounter when applying for grants? How does the Writing Center plan to help students abroad? What keeps senior administrators up at night? We invest a lot of time and effort discussing library issues, but how well do we know the issues of our constituents? What are the problems, priorities, and possibilities of the people we serve? Higher education is poised to undergo a historic evolution with the introduction of new pedagogies, publishing models, and user preferences. Libraries will not only be asked to adapt, but to help lead monumental changes. This paper presents an innovation strategy designed around growth. By adopting a discovery-oriented problem-seeking outlook and a holistic view of our institutions, librarians can develop an entrepreneurial mindset stretching beyond traditionally predefined boundaries. By advancing the objectives of others, we not only help our organizations succeed, but simultaneously reframe the role, value, and perception of libraries throughout the process.
- Assessing Student Needs Through DiscoveryHall, Monena; Lancaster, Charla; Mathews, Brian (2013-04-23)Discovery Teams were created to boost the Library’s R&D effort. Annually, University Libraries at Virginia Tech will collectively explore a theme through hands-on experience. For Spring 2012 the topic was: The Learning Process. This poster combines and presents the findings and potential directions based on the feedback from this research.
- Bioactive Cellulose Nanocrystal-Poly(epsilon-Caprolactone) Nanocomposites for Bone Tissue Engineering ApplicationsHong, Jung Ki; Cooke, Shelley L.; Whittington, Abby R.; Roman, Maren (2021-02-25)3D-printed bone scaffolds hold great promise for the individualized treatment of critical-size bone defects. Among the resorbable polymers available for use as 3D-printable scaffold materials, poly(epsilon-caprolactone) (PCL) has many benefits. However, its relatively low stiffness and lack of bioactivity limit its use in load-bearing bone scaffolds. This study tests the hypothesis that surface-oxidized cellulose nanocrystals (SO-CNCs), decorated with carboxyl groups, can act as multi-functional scaffold additives that (1) improve the mechanical properties of PCL and (2) induce biomineral formation upon PCL resorption. To this end, an in vitro biomineralization study was performed to assess the ability of SO-CNCs to induce the formation of calcium phosphate minerals. In addition, PCL nanocomposites containing different amounts of SO-CNCs (1, 2, 3, 5, and 10 wt%) were prepared using melt compounding extrusion and characterized in terms of Young's modulus, ultimate tensile strength, crystallinity, thermal transitions, and water contact angle. Neither sulfuric acid-hydrolyzed CNCs (SH-CNCs) nor SO-CNCs were toxic to MC3T3 preosteoblasts during a 24 h exposure at concentrations ranging from 0.25 to 3.0 mg/mL. SO-CNCs were more effective at inducing mineral formation than SH-CNCs in simulated body fluid (1x). An SO-CNC content of 10 wt% in the PCL matrix caused a more than 2-fold increase in Young's modulus (stiffness) and a more than 60% increase in ultimate tensile strength. The matrix glass transition and melting temperatures were not affected by the SO-CNCs but the crystallization temperature increased by about 5.5 degrees C upon addition of 10 wt% SO-CNCs, the matrix crystallinity decreased from about 43 to about 40%, and the water contact angle decreased from 87 to 82.6 degrees. The abilities of SO-CNCs to induce calcium phosphate mineral formation and increase the Young's modulus of PCL render them attractive for applications as multi-functional nanoscale additives in PCL-based bone scaffolds.
- Bioinspired design of flexible armor based on chiton scalesConnors, Matthew; Yang, Ting; Hosny, Ahmed; Deng, Zhifei; Yazdandoost, Fatemeh; Massaadi, Hajar; Eernisse, Douglas; Mirzaeifar, Reza; Dean, Mason N.; Weaver, James C.; Ortiz, Christine; Li, Ling (Springer Nature, 2019-12-10)Man-made armors often rely on rigid structures for mechanical protection, which typically results in a trade-off with flexibility and maneuverability. Chitons, a group of marine mollusks, evolved scaled armors that address similar challenges. Many chiton species possess hundreds of small, mineralized scales arrayed on the soft girdle that surrounds their overlapping shell plates. Ensuring both flexibility for locomotion and protection of the underlying soft body, the scaled girdle is an excellent model for multifunctional armor design. Here we conduct a systematic study of the material composition, nanomechanical properties, three-dimensional geometry, and interspecific structural diversity of chiton girdle scales. Moreover, inspired by the tessellated organization of chiton scales, we fabricate a synthetic flexible scaled armor analogue using parametric computational modeling and multi-material 3D printing. This approach allows us to conduct a quantitative evaluation of our chiton-inspired armor to assess its orientation-dependent flexibility and protection capabilities.
- Biosignal-driven Art: Beyond biofeedbackOrtiz, Miguel A.; Coghlan, Niall; Jaimovich, Javier; Knapp, R. Benjamin (CMMAS, 2011)Biosignal monitoring in interactive arts, although present for over forty years, remains a relatively little known field of research within the artistic community as compared to other sensing technologies. Since the early 1960s, an ever-increasing number of artists have collaborated with neuroscientists, physicians and electrical engineers, in order to devise means that allow for the acquisition of the minuscule electrical potentials generated by the human body. This has enabled direct manifestations of human physiology to be incorporated into interactive artworks. This paper presents an introduction to this field of artistic practice and scientific research that uses human physiology as its main element. A brief introduction to the main concepts and history of biosignal-driven art is followed by a review of various artworks and scientific enquiry developed by the authors. This aims at giving a complete overview of the various strategies developed for biosignal-driven interactive art.
- A Case Study of an Interdisciplinary Design Course for Pervasive ComputingCoupey, Eloise; McNair, Lisa D. (IEEE, 2010)This paper provides a case study of an interdisciplinary design project course for pervasive computing products. As a team of faculty from computer engineering, industrial design, and marketing, we have run several interdisciplinary design projects with teams of undergraduates from those disciplines. Our paper will detail our process for each of these projects and how that process has evolved with each offering of the course.