University Libraries
Permanent URI for this community
Browse
Browsing University Libraries by Author "Abedi, Vida"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Empirical study using network of semantically related associations in bridging the knowledge gapAbedi, Vida; Yeasin, Mohammed; Zand, Ramin (2014-11-27)Background The data overload has created a new set of challenges in finding meaningful and relevant information with minimal cognitive effort. However designing robust and scalable knowledge discovery systems remains a challenge. Recent innovations in the (biological) literature mining tools have opened new avenues to understand the confluence of various diseases, genes, risk factors as well as biological processes in bridging the gaps between the massive amounts of scientific data and harvesting useful knowledge. Methods In this paper, we highlight some of the findings using a text analytics tool, called ARIANA - Adaptive Robust and Integrative Analysis for finding Novel Associations. Results Empirical study using ARIANA reveals knowledge discovery instances that illustrate the efficacy of such tool. For example, ARIANA can capture the connection between the drug hexamethonium and pulmonary inflammation and fibrosis that caused the tragic death of a healthy volunteer in a 2001 John Hopkins asthma study, even though the abstract of the study was not part of the semantic model. Conclusion An integrated system, such as ARIANA, could assist the human expert in exploratory literature search by bringing forward hidden associations, promoting data reuse and knowledge discovery as well as stimulating interdisciplinary projects by connecting information across the disciplines.
- Machine Learning-Enabled 30-Day Readmission Model for Stroke PatientsDarabi, Negar; Hosseinichimeh, Niyousha; Noto, Anthony; Zand, Ramin; Abedi, Vida (Frontiers, 2021-03-31)Background and Purpose: Hospital readmissions impose a substantial burden on the healthcare system. Reducing readmissions after stroke could lead to improved quality of care especially since stroke is associated with a high rate of readmission. The goal of this study is to enhance our understanding of the predictors of 30-day readmission after ischemic stroke and develop models to identify high-risk individuals for targeted interventions. Methods: We used patient-level data from electronic health records (EHR), five machine learning algorithms (random forest, gradient boosting machine, extreme gradient boosting–XGBoost, support vector machine, and logistic regression-LR), data-driven feature selection strategy, and adaptive sampling to develop 15 models of 30-day readmission after ischemic stroke. We further identified important clinical variables. Results: We included 3,184 patients with ischemic stroke (mean age: 71 ± 13.90 years, men: 51.06%). Among the 61 clinical variables included in the model, the National Institutes of Health Stroke Scale score above 24, insert indwelling urinary catheter, hypercoagulable state, and percutaneous gastrostomy had the highest importance score. The Model’s AUC (area under the curve) for predicting 30-day readmission was 0.74 (95%CI: 0.64–0.78) with PPV of 0.43 when the XGBoost algorithm was used with ROSE-sampling. The balance between specificity and sensitivity improved through the sampling strategy. The best sensitivity was achieved with LR when optimized with feature selection and ROSE-sampling (AUC: 0.64, sensitivity: 0.53, specificity: 0.69). Conclusions: Machine learning-based models can be designed to predict 30-day readmission after stroke using structured data from EHR. Among the algorithms analyzed, XGBoost with ROSE-sampling had the best performance in terms of AUC while LR with ROSE-sampling and feature selection had the best sensitivity. Clinical variables highly associated with 30-day readmission could be targeted for personalized interventions. Depending on healthcare systems’ resources and criteria, models with optimized performance metrics can be implemented to improve outcomes.
- Multi-Resolution Sensitivity Analysis of Model of Immune Response to Helicobacter pylori Infection via Spatio-Temporal MetamodelingChen, Xi; Wang, Wenjing; Xie, Guangrui; Hontecillas, Raquel; Verma, Meghna; Leber, Andrew; Bassaganya-Riera, Josep; Abedi, Vida (Frontiers, 2019-02-05)Computational immunology studies the interactions between the components of the immune system that includes the interplay between regulatory and inflammatory elements. It provides a solid framework that aids the conversion of pre-clinical and clinical data into mathematical equations to enable modeling and in silico experimentation. The modeling-driven insights shed lights on some of the most pressing immunological questions and aid the design of fruitful validation experiments. A typical system of equations, mapping the interaction among various immunological entities and a pathogen, consists of a high-dimensional input parameter space that could drive the stochastic system outputs in unpredictable directions. In this paper, we perform spatio-temporal metamodel-based sensitivity analysis of immune response to Helicobacter pylori infection using the computational model developed by the ENteric Immune SImulator (ENISI). We propose a two-stage metamodel-based procedure to obtain the estimates of the Sobol’ total and first-order indices for each input parameter, for quantifying their time-varying impacts on each output of interest. In particular, we fully reuse and exploit information from an existing simulated dataset, develop a novel sampling design for constructing the two-stage metamodels, and perform metamodel-based sensitivity analysis. The proposed procedure is scalable, easily interpretable, and adaptable to any multi-input multi-output complex systems of equations with a high-dimensional input parameter space.