Browsing by Author "Auchter, Neal C."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Basin Evolution and Slope System Dynamics of the Cretaceous Magallanes Basin, Chilean PatagoniaAuchter, Neal C. (Virginia Tech, 2016-12-20)Deep-marine basins linked to active continental margins by sloped ocean-floor profiles commonlyhost the final accumulation of sediment that was eroded and transported from the continents. Thedeep-marine sediment archives preserved in these settings commonly offer the most completerecord of sediment transfer from continents to ocean basins over geologic time scales. This isespecially true in basins associated with regions of active tectonism, where loss or alteration ofsediment source terrains leave submarine basin deposits as the only record of the tectonic and cli-matic forcings that govern the transfer of sediment to the deep basin. The overarching goal of thisdissertation is to evaluate controls on submarine slope and basin-floor sedimentation that considersboth large-scale system drivers and the internal complexities and autogenic processes associatedwith sediment routing systems. In pursuit of this goal, the research presented in this dissertationspans a range of spatial and temporal scales. At the largest scale, the influence of sediment recy-cling is addressed to evaluate how changes in intrabasinal sediment sources reflect phases of basinevolution and what influence recycling of previously deposited basin sediments has on the fidelityof the deep-marine sedimentary record at geologic time scales. At the smaller scale, analysis ofsedimentation units and characterization of sedimentary bodies form the foundation for linkingthe stratigraphic preservation of depositional processes to discrete submarine geomorphic condi-tions. Such a linkage can provide insight into changes in slope gradient and the transition fromsediment transport and bypass to sediment deposition along the slope profile. Thirdly, a detailedinvestigation of deformed slope deposits addresses how depositional processes and stratigraphicstacking of submarine fan deposits influences slope stability. Synthesis across these broad spatialand temporal scales required integration of various tools and data types including: (1) detailedoutcrop measurements, (2) cliff-face correlation and characterization of depositional architecture,(3) geologic mapping, (4) basin-scale correlation, (5) detrital geochronology, and (6) carbonategeochemistry.
- Intrabasinal sediment recycling from detrital strontium isotope stratigraphyAuchter, Neal C.; Romans, Brian W.; Hubbard, Stephen M.; Daniels, Benjamin G.; Scher, Howie D.; Buckley, Wayne (2020-10)Temporary storage of sediment between source and sink can hinder reconstruction of climate and/or tectonic signals from stratigraphy by mixing of sediment tracers with diagnostic geochemical or geochronological signatures. Constraining the occurrence and timing of intrabasinal sediment recycling has been challenging because widely used detrital geothermochronology applications do not record shallow burial and subsequent reworking. Here, we apply strontium isotope stratigraphy techniques to recycled marine shell material in slope deposits of the Upper Cretaceous Tres Pasos Formation, Magallanes Basin, Chile. Detrital Sr-87/Sr-86 ages from 94 samples show that the majority (>85%) of the shells are >1-12 m.y. older than independently constrained depositional ages. We interpret the gap between mineralization age (Sr-87/Sr-86 age) and depositional age of host strata to represent the intrabasinal residence time of sediment storage at the million-year time scale. We also use specimen type to infer relative position of intrabasinal source material along the depositional profile, where oysters represent shallow-water (i.e., proximal) sources and inoceramids represent deeper-water (i.e., distal) sources. The combined use of detrital strontium isotope ages and specimen types from linked depositional segments provides an opportunity to identify and quantify sediment storage and recycling in ancient source-to-sink systems.
- Timing of deep-water slope evolution constrained by large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, ChileDaniels, Benjamin G.; Auchter, Neal C.; Hubbard, Stephen M.; Romans, Brian W.; Matthews, William A.; Stright, Lisa (2017-09-15)Deciphering depositional age from deposits that accumulate in deep-water slope settings can enhance understanding of shelf-margin evolutionary timing, as well as controlling mechanisms in ancient systems worldwide. Basin analysis has long employed biostratigraphy and/or tephrochronology to temporally constrain ancient environments. However, due to poor preservation of index fossils and volcanic ash beds in many deepwater systems, deducing the timing of slope evolution has proven challenging. Here, we present >6600 new U-Pb zircon ages with stratigraphic information from an ~100-kmlong by ~2.5-km-thick outcrop belt to elucidate evolutionary timing for a Campanian– Maastrichtian slope succession in the Magallanes Basin, Chile. Results show that the succession consists of four stratigraphic intervals, which characterize four evolutionary phases of the slope system. Overall, the succession records 9.9 ± 1.4 m.y. (80.5 ± 0.3 Ma to 70.6 ± 1.5 Ma) of graded clinoform development punctuated by out-of-grade periods distinguished by enhanced coarse-grained sediment bypass downslope. Synthesis of our results with geochronologic, structural, and stratigraphic data from the basin suggests that slope evolution was largely controlled by an overall decline in basin subsidence from 82 to 74 Ma. In addition to providing insight into slope evolution, our results show that the reliability of zircon-derived depositional duration estimates for ancient sedimentary systems is controlled by: (1) the proportion of syndepositionally formed zircon in a stratigraphic interval; (2) the magnitude of the uncertainty on interval-bounding depositional ages relative to the length of time evaluated; and (3) the geologic time (i.e., period/era) over which the system was active.