Basin Evolution and Slope System Dynamics of the Cretaceous Magallanes Basin, Chilean Patagonia

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Deep-marine basins linked to active continental margins by sloped ocean-floor profiles commonlyhost the final accumulation of sediment that was eroded and transported from the continents. Thedeep-marine sediment archives preserved in these settings commonly offer the most completerecord of sediment transfer from continents to ocean basins over geologic time scales. This isespecially true in basins associated with regions of active tectonism, where loss or alteration ofsediment source terrains leave submarine basin deposits as the only record of the tectonic and cli-matic forcings that govern the transfer of sediment to the deep basin. The overarching goal of thisdissertation is to evaluate controls on submarine slope and basin-floor sedimentation that considersboth large-scale system drivers and the internal complexities and autogenic processes associatedwith sediment routing systems. In pursuit of this goal, the research presented in this dissertationspans a range of spatial and temporal scales. At the largest scale, the influence of sediment recy-cling is addressed to evaluate how changes in intrabasinal sediment sources reflect phases of basinevolution and what influence recycling of previously deposited basin sediments has on the fidelityof the deep-marine sedimentary record at geologic time scales. At the smaller scale, analysis ofsedimentation units and characterization of sedimentary bodies form the foundation for linkingthe stratigraphic preservation of depositional processes to discrete submarine geomorphic condi-tions. Such a linkage can provide insight into changes in slope gradient and the transition fromsediment transport and bypass to sediment deposition along the slope profile. Thirdly, a detailedinvestigation of deformed slope deposits addresses how depositional processes and stratigraphicstacking of submarine fan deposits influences slope stability. Synthesis across these broad spatialand temporal scales required integration of various tools and data types including: (1) detailedoutcrop measurements, (2) cliff-face correlation and characterization of depositional architecture,(3) geologic mapping, (4) basin-scale correlation, (5) detrital geochronology, and (6) carbonategeochemistry.



Geosciences, Stratigraphy, Basin Analysis