Browsing by Author "Benhar, Omar"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working GroupsCollaboration, TLBNE; Akiri, T.; Allspach, D.; Andrews, M.; Arisaka, K.; Arrieta-Diaz, E.; Artuso, M.; Bai, X.; Balantekin, A. B.; Baller, B.; Barletta, W. A.; Barr, G.; Bass, M.; Beck, A.; Becker, B.; Bellini, V.; Benhar, Omar; Berger, B. E.; Bergevin, M.; Berman, E.; Berns, H.; Bernstein, A.; Beroz, F.; Bhatnagar, V.; Bhuyan, B.; Bionta, R.; Bishai, M.; Blake, A.; Blaufuss, E.; Bleakley, B.; Blucher, E.; Blusk, S.; Boehnlein, D.; Bolton, T.; Brack, J.; Bradford, R.; Breedon, R.; Bromberg, C.; Brown, R.; Buchanan, N.; Camilleri, Leslie; Campbell, M.; Carr, Rachel E.; Carminati, G.; Chen, A.; Chen, H.; Cherdack, D.; Chi, C.; Childress, S.; Choudhary, B.; Church, E.; Cline, D.; Coleman, S.; Corey, R.; D'Agostino, M. V.; Davies, G. S.; Dazeley, S.; Jong, J. D.; DeMaat, B.; Demuth, D.; Dighe, A.; Djurcic, Zelimir; Dolph, J.; Drake, G.; Drozhdin, A.; Duan, H.; Duyang, H.; Dye, S.; Dykhuis, T.; Edmunds, D.; Elliott, S.; Enomoto, S.; Escobar, C. O.; Felde, J.; Feyzi, F.; Fleming, B.; Fowler, J.; Fox, W.; Friedland, A.; Fujikawa, B. K.; Gallagher, H.; Garilli, G.; Garvey, G. T.; Gehman, V. M.; Geronimo, G. D.; Gill, R.; Goodman, M.; Goon, J.; Gorbunov, D.; Gran, R.; Guarino, V.; Guarnaccia, E.; Guenette, R.; Gupta, P.; Habig, A.; Hackenburg, R. W.; Hahn, A.; Hahn, R.; Haines, T.; Hans, S.; Harton, J.; Hays, S.; Hazen, E.; He, Q.; Heavey, A.; Heeger, K.; Hellauer, R.; Himmel, A.; Horton-Smith, Glenn A.; Howell, J.; Huber, Patrick; Hurh, P.; Huston, J.; Hylen, J.; Insler, J.; Jaffe, D.; James, C.; Johnson, C.; Johnson, M.; Johnson, R.; Johnson, W.; Johnston, W.; Johnstone, J.; Jones, B.; Jostlein, H.; Junk, T.; Junnarkar, S.; Kadel, R.; Kafka, T.; Kaminski, D.; Karagiorgi, Georgia S.; Karle, A.; Kaspar, J.; Katori, T.; Kayser, B.; Kearns, E.; Kettell, S. H.; Khanam, F.; Klein, J.; Kneller, J.; Koizumi, G.; Kopp, J.; Kopp, S.; Kropp, W.; Kudryavtsev, V. A.; Kumar, A.; Kumar, J.; Kutter, T.; Lackowski, T.; Lande, K.; Lane, C.; Lang, K.; Lanni, F.; Lanza, R.; Latorre, T.; Learned, J.; Lee, D.; Lee, K.; Li, Y.; Linden, S.; Ling, J.; Link, Jonathan M.; Littenberg, L.; Loiacono, L.; Liu, T.; Losecco, J.; Louis, W.; Lucas, P.; Lunardini, C.; Lundberg, B.; Lundin, T.; Makowiecki, D.; Malys, S.; Mandal, S.; Mann, A.; Mantsch, P.; Marciano, W. J.; Mariani, Camillo; Maricic, Jelena; Marino, A.; Marshak, M.; Maruyama, R.; Matthews, J.; Matsuno, S.; Mauger, C.; McCluskey, E.; McDonald, K.; McFarland, K. S.; McKeown, R.; McTaggart, R.; Mehdiyev, R.; Melnitchouk, W.; Meng, Y.; Mercurio, B.; Messier, M.; Metcalf, W.; Milincic, R.; Miller, W.; Mills, G.; Mishra, S.; MoedSher, S.; Mohapatra, D.; Mokhov, N.; Moore, C.; Morfin, J.; Morse, W.; Moss, A.; Mufson, S.; Musser, J.; Naples, D.; Napolitano, J.; Newcomer, M.; Norris, B.; Ouedraogo, S.; Page, B.; Pakvasa, S.; Paley, J.; Paolone, V.; Papadimitriou, V.; Parsa, Z.; Partyka, K.; Pavlovic, Z.; Pearson, C.; Perasso, S.; Petti, R.; Plunkett, R.; Polly, C. C.; Pordes, S.; Potenza, R.; Prakash, A.; Prokofiev, O.; Qian, X.; Raaf, J.; Radeka, V.; Raghavan, R.; Rameika, R.; Rebel, B.; Rescia, S.; Reitzner, D.; Richardson, M.; Riesselmann, K.; Robinson, M.; Rosen, M.; Rosenfeld, C.; Rucinski, R.; Russo, T.; Sahijpal, S.; Salon, S.; Samios, N.; Sanchez, Maria Cristina; Schmitt, R.; Schmitz, D.; Schneps, J.; Scholberg, K.; Seibert, S.; Sergiampietri, F.; Shaevitz, Marjorie Hansen; Shanahan, P.; Shaposhnikov, M.; Sharma, R.; Simos, N.; Singh, V.; Sinnis, G.; Sippach, W.; Skwarnicki, T.; Smy, M.; Sobel, H.; Soderberg, M.; Sondericker, J.; Sondheim, W.; Spitz, Joshua; Spooner, N.; Stancari, M.; Stancu, Ion; Stewart, J.; Stoler, P.; Stone, J.; Stone, S.; Strait, J.; Straszheim, T.; Striganov, S.; Sullivan, G.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Talaga, R.; Tanaka, H.; Tayloe, R.; Taylor, D.; Thomas, J.; Thompson, L.; Thomson, M.; Thorn, C.; Tian, X.; Toki, W.; Tolich, N.; Tripathi, M.; Trovato, M.; Tseung, H.; Tzanov, M.; Urheim, J.; Usman, S.; Vagins, M. R.; Berg, R. V.; Water, R. V. D.; Varner, G.; Vaziri, K.; Velev, G.; Viren, B.; Wachala, T.; Walter, C.; Wang, H.; Wang, Z.; Warner, D.; Webber, D.; Weber, A.; Wendell, R.; Wendt, C.; Wetstein, M.; White, H.; White, S.; Whitehead, L.; Willis, W.; Wilson, R. J.; Winslow, L.; Ye, J.; Yeh, M.; Yu, B.; Zeller, Geralyn P.; Zhang, C.; Zimmerman, E.; Zwaska, R. (2011-10-27)In early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. We report also on a study of optimized beam parameters and the physics capability of proposed Near Detector configurations. This document was presented to the collaboration in fall 2010 and updated with minor modifications in early 2011.
- Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experimentsAnkowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, C. M.; Mariani, Camillo; Meloni, David; Vagnoni, E. (American Physical Society, 2015-10-22)To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ &8594; νμ disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an Ο(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. On the other hand, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.
- Measurement of the Spectral Function of 40Ar through the (e, e'p) reactionAnkowski, Artur M.; Beminiwattha, R. S.; Benhar, Omar; Crabb, D. G.; Day, D. B.; Garibaldi, F.; Garvey, G. T.; Gaskell, D.; Giusti, C.; Hansen, O.; Higinbotham, D. W.; Holmes, R.; Jen, C. M.; Jiang, X.; Keller, D.; Keppel, C. E.; Lindgren, R.; Link, Jonathan M.; Liyanage, N.; Mariani, Camillo; Meucci, A.; Mills, G. B.; Myers, L.; Pitt, M. L.; Rondon, O. A.; Sakuda, M.; Sawatzky, B.; Souder, P. A.; Urciuoli, G. M.; Wood, S.; Zhang, J. (2014-07)The interpretation of the signals detected by high precision experiments aimed at measuring neutrino oscillations requires an accurate description of the neutrino-nucleus cross sections. One of the key element of the analysis is the treatment of nuclear effects, which is one of the main sources of systematics for accelerator based experiments such as the Long Baseline Neutrino Experiment (LBNE). A considerable effort is currently being made to develop theoretical models capable of providing a fully quantitative description of the neutrino-nucleus cross sections in the kinematical regime relevant to LBNE. The approach based on nuclear many-body theory and the spectral function formalism has proved very successful in explaining the available electron scattering data in a variety of kinematical conditions. The first step towards its application to the analysis of neutrino data is the derivation of the spectral functions of nuclei employed in neutrino detectors, in particular argon. We propose a measurement of the coincidence (e, e'p) cross section on argon. This data will provide the experimental input indispensable to construct the argon spectral function, thus paving the way for a reliable estimate of the neutrino cross sections. In addition, the analysis of the (e, e'p) data will help a number of theoretical developments, like the description of final-state interactions needed to isolate the initial-state contributions to the observed single-particle peaks, that is also needed for the interpretation of the signal detected in neutrino experiments.
- Neutrino-nucleus interactions and the determination of oscillation parametersBenhar, Omar; Huber, Patrick; Mariani, Camillo; Meloni, David (Elsevier, 2017-07-12)We review the status and prospects of theoretical studies of neutrino-nucleus interactions, and discuss the influence of the treatment of nuclear effects on the determination of oscillation parameters. The models developed to describe the variety of reaction mechanisms contributing to the nuclear cross sections are analysed, with emphasis placed on their capability to explain the large body of available electron scattering data. The impact of the uncertainties associated with the description of nuclear structure and dynamics on the determination of oscillation parameters is illustrated through examples, and possible avenues towards a better understanding of the signals detected by accelerator-based experiments are outlined.
- Probing electron-argon scattering for liquid-argon based neutrino-oscillation programPandey, V.; Abrams, D.; Alsalmi, S.; Ankowski, Artur M.; Bane, J.; Benhar, Omar; Dai, H.; Day, D. B.; Higinbotham, D. W.; Mariani, Camillo; Murphy, M.; Nguyen, D. (2017-11-05)The electron scattering has been a vital tool to study the properties of the target nucleus for over five decades. Though, the particular interest on 40Ar nucleus stemmed from the progress in the accelerator-based neutrino-oscillation experiments. The complexity of nuclei comprising the detectors and their weak response turned out to be one of the major hurdles in the quest of achieving unprecedented precision in these experiments. The challenges are further magnified by the use of Liquid Argon Time Projection Chambers (LArTPCs) in the short- (SBN) and long-baseline (DUNE) neutrino program, with almost non-existence electron-argon scattering data and hence with no empirical basis to test and develop nuclear models for 40Ar. In light of these challenges, an electron-argon experiment, E12-14-012, was proposed at Jefferson Lab. The experiment has recently successfully completed collecting data for (e,e'p) and (e,e') processes, not just on 40Ar but also on 48Ti, and 12C targets. While the analysis is running with full steam, in this contribution, we present a brief overview of the experiment.
- Supernova Physics at DUNEAnkowski, Artur M.; Beacom, John; Benhar, Omar; Chen, Sun; Cherry, J. J.; Cui, Yanou; Friedland, Alexander; Gil-Botella, Ines; Haghighat, Alireza; Horiuchi, Shunsaku; Huber, Patrick; Kneller, James; Laha, Ranjan; Li, Shirley; Link, Jonathan M.; Lovato, Alessandro; Macias, Oscar; Mariani, Camillo; Mezzacappa, Anthony; O'Connor, Evan; O'Sullivan, Erin; Rubbia, Andre; Scholberg, Kate; Takeuchi, Tatsu (2016)The DUNE/LBNF program aims to address key questions in neutrino physics and astroparticle physics. Realizing DUNE’s potential to reconstruct low-energy particles in the 10–100 MeV energy range will bring significant benefits for all DUNE’s science goals. In neutrino physics, low-energy sensitivity will improve neutrino energy reconstruction in the GeV range relevant for the kinematics of DUNE’s long-baseline oscillation program. In astroparticle physics, low-energy capabilities will make DUNE’s far detectors the world’s best apparatus for studying the electron-neutrino flux from a supernova. This will open a new window to unrivaled studies of the dynamics and neutronization of a star’s central core in real time, the potential discovery of the neutrino mass hierarchy, provide new sensitivity to physics beyond the Standard Model, and evidence of neutrino quantum-coherence effects. The same capabilities will also provide new sensitivity to ‘boosted dark matter’ models that are not observable in traditional direct dark matter detectors.