Browsing by Author "Borguet, Benoit C. J."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- 10 kpc Scale Seyfert Galaxy Outflow: HST/COS Observations of IRAS F22456-5125Borguet, Benoit C. J.; Edmonds, Douglas; Arav, Nahum; Dunn, Jay; Kriss, Gerard A. (IOP Publishing Ltd., 2012-06)We present analysis of the UV spectrum of the low-z AGN IRAS F22456-5125 obtained with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The spectrum reveals six main kinematic components, spanning a range of velocities of up to 800 km s (1), which for the first time are observed in troughs associated with C II, C IV, N V, Si II, Si III, Si IV, and S IV. We also obtain data on the O VI troughs, which we compare to those available from an earlier Far Ultraviolet Spectroscopic Explorer epoch. Column densities measured from these ions allow us to derive a well-constrained photoionization solution for each outflow component. Two of these kinematic components show troughs associated with transitions from excited states of Si II and C II. The number density inferred from these troughs, in combination with the deduced ionization parameter, allows us to determine the distance to these outflow components from the central source. We find these components to be at a distance of similar to 10 kpc. The distances and the number densities derived are consistent with the outflow being part of a galactic wind.
- BAL phosphorus abundance and evidence for immense ionic column densities in quasar outflows: vlt/x-shooter observations of quasar SDSS J1512+1119Borguet, Benoit C. J.; Edmonds, Douglas; Arav, Nahum; Benn, C.; Chamberlain, Carter (IOP Publishing Ltd., 2012-10)We present spectroscopic analysis of the broad absorption line (BAL) outflow in quasar SDSS J1512+1119. In particular, we focus our attention on a kinematic component in which we identify P V and S IV/S IV* absorption troughs. The shape of the unblended phosphorus doublet troughs and the three S IV/S IV* troughs allow us to obtain reliable column density measurements for these two ions. Photoionization modeling using these column densities and those of He I* constrain the abundance of phosphorus to the range of 0.5-4 times the solar value. The total column density, ionization parameter, and metallicity inferred from the P V and S IV column densities lead to large optical depth values for the common transition observed in BAL outflows. We show that the true C IV optical depth is similar to 1000 times greater in the core of the absorption profile than the value deduced from its apparent optical depth.
- Major contributor to AGN feedback: VLT X-shooter observations of S iv BALQSO outflowsBorguet, Benoit C. J.; Arav, Nahum; Edmonds, Douglas; Chamberlain, Carter; Benn, C. (IOP Publishing Ltd., 2013-01)We present the most energetic BALQSO outflow measured to date, with a kinetic luminosity of at least 1046 erg s(-1), which is 5% of the bolometric luminosity of this high Eddington ratio quasar. The associated mass-flow rate is 400 solar masses per year. Such kinetic luminosity and mass-flow rate should provide strong active galactic nucleus feedback effects. The outflow is located at about 300 pc from the quasar and has a velocity of roughly 8000 km s-1. Our distance and energetic measurements are based in large part on the identification and measurement of S iv and S IV* broad absorption lines (BALs). The use of this high-ionization species allows us to generalize the result to the majority of high-ionization BALQSOs that are identified by their C iv absorption. We also report the energetics of two other outflows seen in another object using the same technique. The distances of all three outflows from the central source (100-2000 pc) suggest that we observe BAL troughs much farther away from the central source than the assumed acceleration region of these outflows (0.01-0.1 pc).
- Multiwavelength campaign on Mrk 509 X. Lower limit on the distance of the absorber from HST COS and STIS spectroscopyArav, Nahum; Borguet, Benoit C. J.; Kriss, G. A.; Kaastra, J. S.; Behar, E.; Cappi, M.; Costantini, E.; Detmers, R. G.; Ebrero, J.; Mehdipour, M.; Paltani, S.; Petrucci, P. O.; Pinto, C.; Ponti, G.; Steenbrugge, K. C.; de Vries, C. P.; Bianchi, S. (EDP Sciences, 2012-08)Aims. Active galactic nuclei (AGN) often show evidence of photoionized outflows. A major uncertainty in models for these outflows is the distance (R) to the gas from the central black hole. In this paper we use the HST/COS data from a massive multi-wavelength monitoring campaign on the bright Seyfert I galaxy Mrk 509, in combination with archival HST/STIS data, to constrain the location of the various kinematic components of the outflow. Methods. We compare the expected response of the photoionized gas to changes in ionizing flux with the changes measured in the data using the following steps: 1) We compare the column densities of each kinematic component measured in the 2001 STIS data with those measured in the 2009 COS data; 2) We use time-dependent photionization calculations with a set of simulated lightcurves to put statistical upper limits on the hydrogen number density (nH) that are consistent with the observed small changes in the ionic column densities; 3) From the upper limit on nH, we calculate a lower limit on the distance to the absorber from the central source via the prior determination of the ionization parameter. Our method offers two improvements on traditional timescale analysis. First, we account for the physical behavior of AGN lightcurves. Second, our analysis accounts for the quality of measurement in cases where no changes are observed in the absorption troughs. Results. The very small variations in trough ionic column densities (mostly consistent with no change) between the 2001 and 2009 epochs allow us to put statistical lower limits on R between 100–200 pc for all the major UV absorption components at a confidence level of 99%. These results are mainly consistent with the independent distance estimates derived for the warm absorbers from the simultaneous X-ray spectra. Based on the 100–200 pc lower limit for all the UV components, this absorber cannot be connected with an accretion disc wind. The outflow might have originated from the disc, but based on simple ballistic kinematics, such an event had to occur at least 300 000 years ago in the rest frame of the source.