Browsing by Author "Britzke, Eric R."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Assessing the impacts of white-nose syndrome induced mortality on the monitoring of a bat community at Fort Drum Military InstallationColeman, Laci Sharee (Virginia Tech, 2013-05-23)Since white-nose syndrome (WNS) arrived in the northeastern U.S. in 2006, several affected bat species have exhibited marked population declines (> 90%). For areas such as Fort Drum in northern New York that are subject to regulatory mandates because of the presence of the endangered Indiana bat (Myotis sodalis), acoustic monitoring is now likely more effective than traditional capture methodologies. In the summers of 2011 and 2012, I implemented intensive acoustic sampling using Anabat detectors at Fort Drum to develop a summer acoustic monitoring protocol that is both cost efficient and effective at detecting species of high conservation or management interest, such as the Indiana bat and the little brown bat (Myotis lucifugus). Habitat analysis of radio telemetry data and occupancy models of acoustic data were congruent in confirming nocturnal spatial use of forested riparian zones by little brown bats. Additionally, occupancy models of passive versus active sampling revealed that passive acoustic sampling is preferable to active sampling for detecting declining species in the post-WNS context. Finally, assessment of detection probabilities at various arrays of acoustic detector layouts in an expected area of use revealed that a grid of detectors covering a wide spatial extent was more effective at detecting Indiana and little brown bats than permanent stations, transects, or double transects. My findings suggest that acoustic monitoring can be affectively implemented for monitoring Indiana and little brown bats even in areas of severe decline. Future efforts should be aimed at determining effective sampling designs for additional declining species.
- Dataset for: Effects of hierarchical roost removal on northern long-eared bat (Myotis septentrionalis) maternity coloniesSilvis, Alexander; Ford, W. Mark; Britzke, Eric R. (2014)The impacts of roost-loss on bats is poorly understood. This dataset was used to assess the impact of controlled roost removal on northern long-eared bat maternity day-roosting social structure, roost selection, and movement. Article: http://hdl.handle.net/10919/85186
- Day-roosting Social Ecology of the Northern Long-eared Bat (Myotis septentrionalis) and the Endangered Indiana Bat (Myotis sodalis)Silvis, Alexander (Virginia Tech, 2014-12-08)Day-roost use by northern long-eared bat (Myotis septentrionalis) maternity colonies on the Fort Knox military reservation, Kentucky, USA, resulted in formation of non-random networks of roosts that exhibited a trend toward centralization. Centralization of day-roost networks was reflected in the social structure of colonies, which were characterized by dense associations among individuals within colonies. Social structure varied among colonies and appeared to be related to reproductive condition; colonies exhibited greater cohesiveness during parturition and lactation. Northern long-eared bat maternity colonies appeared to be exclusive, occupying distinct roosting areas with one or several areas receiving intense use. Day-roost removal simulations suggested a linear relationship between colony fragmentation and roost loss, and that loss of >20% of roosts is required to initiate colony fragmentation. Experimental hierarchical removal of day-roosts yielded results consistent with simulations, as removal of the single most-central (primary) roost had no impact on colony fragmentation, whereas removal of 24% of less-central (secondary) roosts resulted in partial network fragmentation. Patterns of colony day-roost and space use were similar pre- and post-removal treatments. Day-roost removal did not alter the number of roosts used by individual bats, but distances moved between roosts were greater in the secondary roost-removal treatment group. Day-roost characteristics largely were consistent pre-post treatment for both treatment groups. Historical data from an Indiana bat (Myotis sodalis) maternity colony revealed that this species also exhibits a non-random social assorting dynamic. Non-random social assortment resulted in a closely connected centralized network of day-roosts. Individuals within the Indiana bat maternity colony exhibited close social connections with colony members, but subgroups likely existed within the colony. Indiana bat day-roosting ecology appears flexible, as patterns of roost and space use differed substantially between years. Development of specific, but tactical, management approaches for individual colonies of both northern long-eared and Indiana bats may be possible. Such approaches would allow land managers to manage for both northern long-eared bat habitat and other objectives. However, the nature of targeted management approaches employed likely will depend on the unique forest context and dynamic within which individual colonies reside.
- Effects of Hierarchical Roost Removal on Northern Long-Eared Bat (Myotis septentrionalis) Maternity ColoniesSilvis, Alexander; Ford, W. Mark; Britzke, Eric R. (PLOS, 2015-01-22)Forest roosting bats use a variety of ephemeral roosts such as snags and declining live trees. Although conservation of summer maternity habitat is considered critical for forest-roosting bats, bat response to roost loss still is poorly understood. To address this, we monitored 3 northern long-eared bat (Myotis septentrionalis) maternity colonies on Fort Knox Military Reservation, Kentucky, USA, before and after targeted roost removal during the dormant season when bats were hibernating in caves. We used 2 treatments: removal of a single highly used (primary) roost and removal of 24% of less used (secondary) roosts, and an un-manipulated control. Neither treatment altered the number of roosts used by individual bats, but secondary roost removal doubled the distances moved between sequentially used roosts. However, overall space use by and location of colonies was similar pre- and post-treatment. Patterns of roost use before and after removal treatments also were similar but bats maintained closer social connections after our treatments. Roost height, diameter at breast height, percent canopy openness, and roost species composition were similar pre- and post-treatment. We detected differences in the distribution of roosts among decay stages and crown classes pre- and post-roost removal, but this may have been a result of temperature differences between treatment years. Our results suggest that loss of a primary roost or ≤ 20% of secondary roosts in the dormant season may not cause northern long-eared bats to abandon roosting areas or substantially alter some roosting behaviors in the following active season when tree-roosts are used. Critically, tolerance limits to roost loss may be dependent upon local forest conditions, and continued research on this topic will be necessary for conservation of the northern long-eared bat across its range. Data: http://hdl.handle.net/10919/50954
- Forest Succession and Maternity Day Roost Selection by Myotis septentrionalis in a Mesophytic Hardwood ForestSilvis, Alexander; Ford, W. Mark; Britzke, Eric R.; Beane, Nathan R.; Johnson, Joshua B. (Hindawi, 2012-09-20)Conservation of summer maternity roosts is considered critical for bat management in North America, yet many aspects of the physical and environmental factors that drive roost selection are poorly understood. We tracked 58 female northern bats (Myotis septentrionalis) to 105 roost trees of 21 species on the Fort Knox military reservation in north-central Kentucky during the summer of 2011. Sassafras (Sassafras albidum) was used as a day roost more than expected based on forest stand-level availability and accounted for 48.6% of all observed day roosts. Using logistic regression and an information theoretic approach, we were unable to reliably differentiate between sassafras and other roost species or between day roosts used during different maternity periods using models representative of individual tree metrics, site metrics, topographic location, or combinations of these factors. For northern bats, we suggest that day-roost selection is not a function of differences between individual tree species per se, but rather of forest successional patterns, stand and tree structure. Present successional trajectories may not provide this particular selected structure again without management intervention, thereby suggesting that resource managers take a relatively long retrospective view to manage current and future forest conditions for bats.
- Relatedness within and among northern long-eared bat (Myotis septentrionalis) colonies at a local scaleOlivera-Hyde, Miluska; Silvis, Alexander; Hallerman, Eric M.; Ford, W. Mark; Britzke, Eric R. (2019-08)We assessed parentage within and among maternity colonies of northern long-eared bats (Myotis septentrionalis (Trouessart, 1897)) in north-central Kentucky, USA, from 2011 to 2013 to examine colony social structure, formation, and membership dynamics. We intensively sampled colonies in close and remote (>10 km) proximity before and after targeted day-roost removal. Colonies were not necessarily composed of closely related individuals, although natal philopatry was common. Adjacent colonies often contained maternally related individuals, indicating that some pups did disperse, albeit not far from their natal home range. Whereas some young had been sired by males also collected on site, most had not, as would be expected since the species mates in fall near hibernacula across a wider landscape. The number of parentages that we inferred among colonies, however, suggests that outside the maternity season, social groups may be relatively flexible and open. Analysis of microsatellite DNA data showed a low F-ST (0.011) and best fit to a model of one multilocus genotypic cluster across the study area. We observed high turnover in colony membership between years in all colonies, regardless of roost-removal treatment. Our results suggest that female northern long-eared bats exhibit fidelity to a general geographic area and complex, dynamic social-genetic structure.