Browsing by Author "Buda, Anthony R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian modelsWagena, Moges B.; Goering, Dustin; Collick, Amy S.; Bock, Emily; Fuka, Daniel R.; Buda, Anthony R.; Easton, Zachary M. (2020-04)Streamflow forecasts are essential for water resources management. Although there are many methods for forecasting streamflow, real-time forecasts remain challenging. This study evaluates streamflow forecasts using a process-based model (Soil and Water Assessment Tool-Variable Source Area model-SWAT-VSA), a stochastic model (Artificial Neural Network -ANN), an Auto-Regressive Moving-Average (ARMA) model, and a Bayesian ensemble model that utilizes the SWAT-VSA, ANN, and ARMA results. Streamflow is forecast from 1 to 8 d, forced with Quantitative Precipitation Forecasts from the US National Weather Service. Of the individual models, SWAT-VSA and the ANN provide better predictions of total streamflow (NSE 0.60-0.70) and peak flow, but underpredicted low flows. During the forecast period the ANN had the highest predictive power (NSE 0.44-0.64), however all three models underpredicted peak flow. The Bayesian ensemble forecast streamflow with the most skill for all forecast lead times (NSE 0.49-0.67) and provided a quantification of prediction uncertainty.
- Improved Simulation of Edaphic and Manure Phosphorus Loss in SWATCollick, Amy S.; Veith, Tamie L.; Fuka, Daniel R.; Kleinman, Peter J. A.; Buda, Anthony R.; Weld, Jennifer L.; Bryant, Ray B.; Vadas, Peter A.; White, Mike J.; Harmel, R. Daren; Easton, Zachary M. (2016-07)Watershed models such as the Soil Water Assessment Tool (SWAT) and the Agricultural Policy Environmental EXtender (APEX) are widely used to assess the fate and transport of agricultural nutrient management practices on soluble and particulate phosphorus (P) loss in runoff. Soil P-cycling routines used in SWAT2012 revision 586, however, do not simulate the short-term effects of applying a concentrated source of soluble P, such as manure, to the soil surface where it is most vulnerable to runoff. We added a new set of soil P routines to SWAT2012 revision 586 to simulate surface-applied manure at field and subwatershed scales within Mahantango Creek watershed in south-central Pennsylvania. We corroborated the new P routines and standard P routines in two versions of SWAT (conventional SWAT, and a topographically driven variation called TopoSWAT) for a total of four modeling "treatments". All modeling treatments included 5 yr of measured data under field-specific, historical management information. Short-term "wash off" processes resulting from precipitation immediately following surface application of manures were captured with the new P routine whereas the standard routines resulted in losses regardless of manure application. The new routines improved sensitivity to key factors in nutrient management (i.e., timing, rate, method, and form of P application). Only the new P routines indicated decreases in soluble P losses for dairy manure applications at 1, 5, and 10 d before a storm event. The new P routines also resulted in more variable P losses when applying manure versus commercial fertilizer and represented increases in total P losses, as compared with standard P routines, with rate increases in dairy manure application (56,000 to 84,000 L ha(-1)). The new P routines exhibited greater than 50% variation among proportions of organic, particulate, and soluble P corresponding to spreading method. In contrast, proportions of P forms under the standard P routines varied less than 20%. Results suggest similar revisions to other agroecosystem watershed models would be appropriate.
- Phosphorus and the Chesapeake Bay: Lingering Issues and Emerging Concerns for AgricultureKleinman, Peter J. A.; Fanelli, Rosemary M.; Hirsch, Robert M.; Buda, Anthony R.; Easton, Zachary M.; Wainger, Lisa A.; Brosch, Chris; Lowenfish, Martin; Collick, Amy S.; Shirmohammadi, Adel; Boomer, Kathy; Hubbart, Jason A.; Bryant, Ray B.; Shenk, Gary W. (2019-09)Hennig Brandt's discovery of phosphorus (P) occurred during the early European colonization of the Chesapeake Bay region. Today, P, an essential nutrient on land and water alike, is one of the principal threats to the health of the bay. Despite widespread implementation of best management practices across the Chesapeake Bay watershed following the implementation in 2010 of a total maximum daily load (TMDL) to improve the health of the bay, P load reductions across the bay's 166,000-km(2) watershed have been uneven, and dissolved P loads have increased in a number of the bay's tributaries. As the midpoint of the 15-yr TMDL process has now passed, some of the more stubborn sources of P must now be tackled. For nonpoint agricultural sources, strategies that not only address particulate P but also mitigate dissolved P losses are essential. Lingering concerns include legacy P stored in soils and reservoir sediments, mitigation of P in artificial drainage and stormwater from hotspots and converted farmland, manure management and animal heavy use areas, and critical source areas of P in agricultural landscapes. While opportunities exist to curtail transport of all forms of P, greater attention is required toward adapting P management to new hydrologic regimes and transport pathways imposed by climate change.
- Short-term Forecasting Tools for Agricultural Nutrient ManagementEaston, Zachary M.; Kleinman, Peter J. A.; Buda, Anthony R.; Goering, Dustin; Emberston, Nichole; Reed, Seann; Drohan, Patrick J.; Walter, M. Todd; Guinan, Pat; Lory, John A.; Sommerlot, Andrew R.; Sharpley, Andrew (2017-11)The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure.