Browsing by Author "Cai, Weiwei"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescenceCai, Weiwei; Li, Xuesong; Li, Fei; Ma, Lin (Optical Society of America, 2013-03-25)Three-dimensional (3D) measurements are highly desirable both for fundamental combustion research and practical monitoring and control of combustion systems. This work discusses a 3D diagnostic based on tomographic chemiluminescence (TC) to address this measurement need. The major contributions of this work are threefold. First, a hybrid algorithm is developed to solve the 3D TC problem. The algorithm was demonstrated in extensive tests, both numerical and experimental, to yield 3D reconstruction with high fidelity. Second, an experimental approach was designed to enable quantifiable metrics for examining key aspects of the 3D TC technique, including its spatial resolution and reconstruction accuracy. Third, based on the reconstruction algorithm and experimental results, we investigated the effects of the view orientations. The results suggested that for an unknown flame, it is better to use projections measured from random orientations than restricted orientations (e.g., coplanar orientations). These findings are expected to provide insights to the fundamental capabilities of the TC technique, and also to facilitate its practical application.
- Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imagingCai, Weiwei; Li, Xuesong; Ma, Lin (Optical Society of America, 2013-11-01)Instantaneous three-dimensional (3D) measurements have been long desired to resolve the spatial structures of turbulent flows and flame. Previous efforts have demonstrated tomography as a promising technique to enable such measurements. To facilitate the practical application, this work investigated four practical aspects for implementing 3D tomographic under the context of volumetric combustion diagnostics. Both numerical simulations and controlled experiments were performed to study: (1) the termination criteria of the inversion algorithm; (2) the effects of regularization and the determination of the optimal regularization factor; (3) the effects of a number of views; and (4) the impact of the resolution of the projection measurements. The results obtained have illustrated the effects of these practical aspects on the accuracy and spatial resolution of volumetric tomography. Furthermore, all these aspects are related to the complexity and implementing cost (both hardware cost and computational cost). Therefore, the results obtained in this work are expected to be valuable for the design and implementation of practical 3D diagnostics. (C) 2013 Optical Society of America
- Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flowsLi, Fei; Yu, XiLong; Cai, Weiwei; Ma, Lin (Optical Society of America, 2012-07-01)This work investigates the error caused by nonuniformities along the line-of-sight in velocity measurement using tunable diode-laser absorption spectroscopy (TDLAS). Past work has demonstrated TDLAS as an attractive diagnostic technique for measuring velocity, which is inferred from the Doppler shift of two absorption features using two crossing laser beams. However, because TDLAS is line-of-sight in nature, the obtained velocity is a spatially averaged value along the probing laser beams. As a result, nonuniformities in the flow can cause uncertainty in the velocity measurement. Therefore, it is the goal of this work to quantify the uncertainty caused by various nonuniformities typically encountered in practice, including boundary layer effects, the divergence/convergence of the flow, and the methods used to fit the Doppler shift. Systematic analyses are performed to quantify the uncertainty under various conditions, and case studies are reported to illustrate the usefulness of such analysis in interpreting experimental data obtained from a scramjet facility. We expect this work to be valuable for the design and optimization of TDLAS-based velocimetry, and also for the quantitative interpretation of the measurements. (C) 2012 Optical Society of America