Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence

Files
Main article (4.2 MB)
Downloads: 1338
TR Number
Date
2013-03-25
Journal Title
Journal ISSN
Volume Title
Publisher
Optical Society of America
Abstract

Three-dimensional (3D) measurements are highly desirable both for fundamental combustion research and practical monitoring and control of combustion systems. This work discusses a 3D diagnostic based on tomographic chemiluminescence (TC) to address this measurement need. The major contributions of this work are threefold. First, a hybrid algorithm is developed to solve the 3D TC problem. The algorithm was demonstrated in extensive tests, both numerical and experimental, to yield 3D reconstruction with high fidelity. Second, an experimental approach was designed to enable quantifiable metrics for examining key aspects of the 3D TC technique, including its spatial resolution and reconstruction accuracy. Third, based on the reconstruction algorithm and experimental results, we investigated the effects of the view orientations. The results suggested that for an unknown flame, it is better to use projections measured from random orientations than restricted orientations (e.g., coplanar orientations). These findings are expected to provide insights to the fundamental capabilities of the TC technique, and also to facilitate its practical application.

Description
Keywords
Combustion diagnostics, Three-dimensional image processing
Citation
Cai, W., Li,X., Li, F., and Ma, L., "Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence," Opt. Express 21, 7050-7064 (2013)