Browsing by Author "Carey, Cayelan C."
Now showing 1 - 20 of 73
Results Per Page
Sort Options
- A modular curriculum to teach undergraduates ecological forecasting improves student and instructor confidence in their data science skillsLofton, Mary E.; Moore, Tadhg N.; Woelmer, Whitney M.; Thomas, R. Quinn; Carey, Cayelan C. (Oxford University Press, 2024-10-10)Data science skills (e.g., analyzing, modeling, and visualizing large data sets) are increasingly needed by undergraduates in the life sciences. However, a lack of both student and instructor confidence in data science skills presents a barrier to their inclusion in undergraduate curricula. To reduce this barrier, we developed four teaching modules in the Macrosystems EDDIE (for environmental data-driven inquiry and exploration) program to introduce undergraduate students and instructors to ecological forecasting, an emerging subdiscipline that integrates multiple data science skills. Ecological forecasting aims to improve natural resource management by providing future predictions of ecosystems with uncertainty. We assessed module efficacy with 596 students and 26 instructors over 3 years and found that module completion increased students’ confidence in their understanding of ecological forecasting and instructors’ likelihood to work with long-term, high-frequency sensor network data. Our modules constitute one of the first formalized data science curricula on ecological forecasting for undergraduates.
- Advancing lake and reservoir water quality management with near-term, iterative ecological forecastingCarey, Cayelan C.; Woelmer, Whitney M.; Lofton, Mary E.; Figueiredo, Renato J.; Bookout, Bethany J.; Corrigan, Rachel S.; Daneshmand, Vahid; Hounshell, Alexandria G.; Howard, Dexter W.; Lewis, Abigail S. L.; McClure, Ryan P.; Wander, Heather L.; Ward, Nicole K.; Thomas, R. Quinn (2021-01-18)Near-term, iterative ecological forecasts with quantified uncertainty have great potential for improving lake and reservoir management. For example, if managers received a forecast indicating a high likelihood of impending impairment, they could make decisions today to prevent or mitigate poor water quality in the future. Increasing the number of automated, real-time freshwater forecasts used for management requires integrating interdisciplinary expertise to develop a framework that seamlessly links data, models, and cyberinfrastructure, as well as collaborations with managers to ensure that forecasts are embedded into decision-making workflows. The goal of this study is to advance the implementation of near-term, iterative ecological forecasts for freshwater management. We first provide an overview of FLARE (Forecasting Lake And Reservoir Ecosystems), a forecasting framework we developed and applied to a drinking water reservoir to assist water quality management, as a potential open-source option for interested users. We used FLARE to develop scenario forecasts simulating different water quality interventions to inform manager decision-making. Second, we share lessons learned from our experience developing and running FLARE over 2 years to inform other forecasting projects. We specifically focus on how to develop, implement, and maintain a forecasting system used for active management. Our goal is to break down the barriers to forecasting for freshwater researchers, with the aim of improving lake and reservoir management globally.
- Analysis of high-frequency and long-term data in undergraduate ecology classes improves quantitative literacyKlug, Jennifer L.; Carey, Cayelan C.; Richardson, David C.; Gougis, Rebekka Darner (Ecological Society of America, 2017-03)Ecologists are increasingly analyzing long-term and high-frequency sensor datasets as part of their research. As ecology becomes a more data-rich scientific discipline, the next generation of ecologists needs to develop the quantitative literacy required to effectively analyze,visualize, and interpret large datasets. We developed and assessed three modules to teach undergraduate freshwater ecology students both scientific concepts and quantitative skills needed to work with large datasets. These modules covered key ecological topics of phenology, physical mixing, and the balance between primary production and respiration, using lakes as model systems with high-frequency or long-term data. Our assessment demonstrated that participating in these modules significantly increased student comfort using spreadsheet software and their self-reported competence in performing a variety of quantitative tasks. Interestingly, students with the lowest pre-module comfort and skills achieved the biggest gains. Furthermore, students reported that participating in the modules helped them better understand the concepts presented and that they appreciated practicing quantitative skills. Our approach demonstrates that working with large datasets in ecology classrooms helps undergraduate students develop the skills and knowledge needed to help solve complex ecological problems and be more prepared for a data-intensive future.
- Anoxia begets anoxia: A positive feedback to the deoxygenation of temperate lakesLewis, Abigail S. L.; Lau, Maximilian P.; Jane, Stephen F.; Rose, Kevin C.; Be'eri-Shlevin, Yaron; Burnet, Sarah H.; Clayer, François; Feuchtmayr, Heidrun; Grossart, Hans-Peter; Howard, Dexter W.; Mariash, Heather; Delgado Martin, Jordi; North, Rebecca L.; Oleksy, Isabella; Pilla, Rachel M.; Smagula, Amy P.; Sommaruga, Ruben; Steiner, Sara E.; Verburg, Piet; Wain, Danielle; Weyhenmeyer, Gesa A.; Carey, Cayelan C. (Wiley, 2023)Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep-water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time-series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656-lake dataset. Likewise, we found further support for these relationships by analyzing time-series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake-specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high-phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.
- Anoxia decreases the magnitude of the carbon, nitrogen, and phosphorus sink in freshwatersCarey, Cayelan C.; Hanson, Paul C.; Thomas, R. Quinn; Gerling, Alexandra B.; Hounshell, Alexandria G.; Lewis, Abigail S.; Lofton, Mary E.; McClure, Ryan P.; Wander, Heather L.; Woelmer, Whitney M.; Niederlehner, B.R.; Schreiber, Madeline E. (Wiley, 2022-05-05)Oxygen availability is decreasing in many lakes and reservoirs worldwide, raising the urgency for understanding how anoxia (low oxygen) affects coupled biogeochemical cycling, which has major implications for water quality, food webs, and ecosystem functioning. Although the increasing magnitude and prevalence of anoxia has been documented in freshwaters globally, the challenges of disentangling oxygen and temperature responses have hindered assessment of the effects of anoxia on carbon, nitrogen, and phosphorus concentrations, stoichiometry (chemical ratios), and retention in freshwaters. The consequences of anoxia are likely severe and may be irreversible, necessitating ecosystem-scale experimental investigation of decreasing freshwater oxygen availability. To address this gap, we devised and conducted REDOX (the Reservoir Ecosystem Dynamic Oxygenation eXperiment), an unprecedented, 7-year experiment in which we manipulated and modeled bottom-water (hypolimnetic) oxygen availability at the whole-ecosystem scale in a eutrophic reservoir. Seven years of data reveal that anoxia significantly increased hypolimnetic carbon, nitrogen, and phosphorus concentrations and altered elemental stoichiometry by factors of 2–5× relative to oxic periods. Importantly, prolonged summer anoxia increased nitrogen export from the reservoir by six-fold and changed the reservoir from a net sink to a net source of phosphorus and organic carbon downstream. While low oxygen in freshwaters is thought of as a response to land use and climate change, results from REDOX demonstrate that low oxygen can also be a driver of major changes to freshwater biogeochemical cycling, which may serve as an intensifying feedback that increases anoxia in downstream waterbodies. Consequently, as climate and land use change continue to increase the prevalence of anoxia in lakes and reservoirs globally, it is likely that anoxia will have major effects on freshwater carbon, nitrogen, and phosphorus budgets as well as water quality and ecosystem functioning.
- Assessing opportunities and inequities in undergraduate ecological forecasting educationWillson, Alyssa M.; Gallo, Hayden; Peters, Jody A.; Abeyta, Antoinette; Watts, Nievita Bueno; Carey, Cayelan C.; Moore, Tadhg N.; Smies, Georgia; Thomas, R. Quinn; Woelmer, Whitney M.; McLachlan, Jason S. (Wiley, 2023-05)Conducting ecological research in a way that addresses complex, real-world problems requires a diverse, interdisciplinary and quantitatively trained ecology and environmental science workforce. This begins with equitably training students in ecology, interdisciplinary science, and quantitative skills at the undergraduate level. Understanding the current undergraduate curriculum landscape in ecology and environmental sciences allows for targeted interventions to improve equitable educational opportunities. Ecological forecasting is a sub-discipline of ecology with roots in interdisciplinary and quantitative science. We use ecological forecasting to show how ecology and environmental science undergraduate curriculum could be evaluated and ultimately restructured to address the needs of the 21(st) century workforce. To characterize the current state of ecological forecasting education, we compiled existing resources for teaching and learning ecological forecasting at three curriculum levels: online resources; US university courses on ecological forecasting; and US university courses on topics related to ecological forecasting. We found persistent patterns (1) in what topics are taught to US undergraduate students at each of the curriculum levels; and (2) in the accessibility of resources, in terms of course availability at higher education institutions in the United States. We developed and implemented programs to increase the accessibility and comprehensiveness of ecological forecasting undergraduate education, including initiatives to engage specifically with Native American undergraduates and online resources for learning quantitative concepts at the undergraduate level. Such steps enhance the capacity of ecological forecasting to be more inclusive to undergraduate students from diverse backgrounds and expose more students to quantitative training.
- Building, applying, and communicating ecosystem understanding via freshwater forecasts over time and spaceWoelmer, Whitney M. (Virginia Tech, 2023-09-05)Accelerating rates of change in ecosystems globally heighten the need for improved predictions of future ecological conditions. Freshwater lakes and reservoirs, which provide numerous ecosystem services, are particularly threatened by global change stressors and have already exhibited substantial changes to their physical, chemical, and biological functioning. Thus, to provide useful predictive tools for managing freshwater resources in the face of global change, we must improve our ability to build, apply, and communicate understanding of lake and reservoir ecosystem dynamics. To address this, I first built ecosystem understanding by conducting multiple whole-ecosystem surveys to quantify the spatial and temporal variability of biogeochemistry in two reservoirs over a year. We found that temporal heterogeneity was higher than spatial heterogeneity for most biogeochemical variables, with the stream-reservoir interface as a consistent hotspot of biogeochemical processing. Second, I applied ecosystem understanding by producing ecological forecasts of physical (water temperature), chemical (dissolved oxygen), and biological (chlorophyll-a) variables across three waterbodies using diverse modeling methods. I developed daily, weekly, and fortnightly forecasts of chlorophyll-a at two drinking water reservoirs using a Bayesian linear model, and found process uncertainty dominated total forecast uncertainty. Additionally, I produced forecasts of water temperature and dissolved oxygen in an oligotrophic lake using a hydrodynamic-ecosystem model and found that water temperature was more predictable than oxygen despite variable performance over depth and between years. Across these two forecasting studies, forecast skill relative to a null model varied among water quality metrics: water temperature forecasts outperformed the null model up to 11 days ahead, oxygen forecasts outperformed the null model up to 2 days ahead, and chlorophyll-a forecasts outperformed the null model up to 14 days ahead. Third, to communicate forecasts for decision-making, I developed an educational module for undergraduate ecology students which taught important concepts on visualization and decision science. Following completion of the module, students' ability to identify methods for uncertainty communication increased significantly, as well as their understanding of the benefits of ecological forecasting. Overall, my dissertation provides insight into how reservoirs function in global biogeochemical cycles, the predictability of multiple water quality variables, and deepens our understanding of how to communicate ecosystem science for improved management and protection of ecosystems.
- Calanoid copepod zooplankton density is positively associated with water residence time across the continental United StatesDoubek, Jonathan P.; Carey, Cayelan C.; Lavender, Michael; Winegardner, Amanda K.; Beaulieu, Marieke; Kelly, Patrick T.; Pollard, Amina I.; Straile, Dietmar; Stockwell, Jason D. (PLOS, 2019-01-09)Inherent differences between naturally-formed lakes and human-made reservoirs may play an important role in shaping zooplankton community structure. For example, because many reservoirs are created by impounding and managing lotic systems for specific human purposes, zooplankton communities may be affected by factors that are unique to reservoirs, such as shorter water residence times and a reservoir’s management regime, compared to natural lakes. However, the environmental factors that structure zooplankton communities in natural lakes vs. reservoirs may vary at the continental scale and remain largely unknown. We analyzed data from the 2007 U.S. Environmental Protection Agency’s National Lakes Assessment and the U.S. Army Corps of Engineers’ National Inventory of Dams to compare large-bodied crustacean zooplankton communities (defined here as individuals retained by 0.243 mm mesh size) in natural lakes and reservoirs across the continental U.S. using multiple linear regressions and regression tree analyses. We found that large-bodied crustacean zooplankton density was overall higher in natural lakes compared to reservoirs when the effect of latitude was controlled. The difference between waterbody types was driven by calanoid copepods, which were also more likely to be dominant in the >0.243 mm zooplankton community in natural lakes than in reservoirs. Regression tree analyses revealed that water residence time was not a major driver of calanoid copepod density in natural lakes but was one of the most important drivers of calanoid copepod density in reservoirs, which had on average 0.5-year shorter water residence times than natural lakes. Reservoirs managed for purposes that resulted in shorter residence times (e.g., hydroelectric power) had lower zooplankton densities than reservoirs managed for purposes that resulted in longer residence times (e.g., irrigation). Consequently, our results indicate that water residence time may be an important characteristic driving differing large-bodied zooplankton dynamics between reservoirs and natural lakes.
- Can interactive data visualizations promote waterfront best management practices?Ward, Nicole K.; Sorice, Michael G.; Reynolds, Mikaila S.; Weathers, Kathleen C.; Weng, Weizhe; Carey, Cayelan C. (Taylor & Francis, 2022-01-02)Lake water quality management often requires private property owner engagement since land-use change generally occurs on private property. Educational components of lake management outreach must connect current property owner behaviors with future water quality. However, it may be challenging for property owners to associate their current behaviors with water quality outcomes due to the time lag between a behavior (e.g., fertilizer application) and a water quality outcome (e.g., decreased water clarity). Interactive data visualizations, characterized by user-determined selections that change visualization output, may be well suited to help property owners connect current behavior to future water quality. We tested the effectiveness of an online, interactive visualization as an educational intervention to alter property owners' perspectives related to applying lawn fertilizer and installing waterfront buffers. We used cognitive psychology measures to quantify intervention effectiveness. Since property owners' decision making may be driven by connections to their property, we also explored relationships between seasonal and permanent residents and intentions to apply fertilizer or install waterfront buffers and intervention effectiveness. Despite no significant difference in effectiveness between the interactive and noninteractive versions, the combined responses demonstrated a positive shift in behavioral beliefs and intentions related to lawn fertilizer application and waterfront buffer installation. Seasonal residents were less likely than permanent residents to apply lawn fertilizer before the intervention and more likely to shift their intentions after the intervention. This study provides evidence that brief educational interventions-regardless of their interactivity-can shift private property owner beliefs and intentions regarding lakefront property management.
- Cross-scale Perspectives: Integrating Long-term and High-frequency Data into Our Understanding of Communities and EcosystemsCarey, Cayelan C.; Cottingham, Kathryn L. (Ecological Society of America, 2016-01)Ecologists are amassing extensive data sets that include both long-term records documenting trends and variability in natural systems on inter-annual to decadal time scales and sensor-based measurements on minute to subhourly scales for extended periods (Hampton et al. 2013). Together, these long- term and high- frequency data are contributing to our ecological understanding. Although there have been several previous ESA sessions that have explored the insights provided by either long-term data or high frequency data, to our knowledge this organized oral session provided one of the first opportunities to synthesize the lessons learned from leveraging both long-term data and high-frequency approaches.
- Cyanobacteria as biological drivers of lake nitrogen and phosphorus cyclingCottingham, Kathryn L.; Ewing, Holly A.; Greer, Meredith L.; Carey, Cayelan C.; Weathers, Kathleen C. (Ecological Society of America, 2015-01)Here we draw attention to the potential for pelagic bloom-forming cyanobacteria to have substantial effects on nutrient cycling and ecosystem resilience across a wide range of lakes. Specifically, we hypothesize that cyanobacterial blooms can influence lake nutrient cycling, resilience, and regime shifts by tapping into pools of nitrogen (N) and phosphorus (P) not usually accessible to phytoplankton. The ability of many cyanobacterial taxa to fix dissolved N-2 gas is a well-known potential source of N, but some taxa can also access pools of P in sediments and bottom waters. Both of these nutrients can be released to the water column via leakage or mortality, thereby increasing nutrient availability for other phytoplankton and microbes. Moreover, cyanobacterial blooms are not restricted to high nutrient (eutrophic) lakes: blooms also occur in lakes with low nutrient concentrations, suggesting that changes in nutrient cycling and ecosystem resilience mediated by cyanobacteria could affect lakes across a gradient of nutrient concentrations. We used a simple model of coupled N and P cycles to explore the effects of cyanobacteria on nutrient dynamics and resilience. Consistent with our hypothesis, parameters reflecting cyanobacterial modification of N and P cycling alter the number, location, and/or stability of model equilibria. In particular, the model demonstrates that blooms of cyanobacteria in low-nutrient conditions can facilitate a shift to the high-nutrient state by reducing the resilience of the low-nutrient state. This suggests that cyanobacterial blooms warrant attention as potential drivers of the transition from a low-nutrient, clear-water regime to a high-nutrient, turbid-water regime, a prediction of particular concern given that such blooms are reported to be increasing in many regions of the world due in part to global climate change.
- The cyanobacterium Gloeotrichia echinulata increases the stability and network complexity of phytoplankton communitiesCarey, Cayelan C.; Brown, Bryan L.; Cottingham, Kathryn L. (Wiley-Blackwell, 2017-07-07)Changes in the abundance of a taxon can have large effects on communities, particularly if that taxon is a strong interactor. These changes may arise as a consequence of environmental change, recruitment from dormant stages, or quirks of population dynamics, and have effects that ripple through a community interaction network. We hypothesized that cyanobacteria, which are increasing in many freshwater lakes globally, may be strong interactors because they can exert large and persistent effects on the biomass and composition of other phytoplankton. To test this hypothesis, we evaluated how the phytoplankton community responded to different densities of Gloeotrichia echinulata, a large colonial cyanobacterium increasingly observed in low‐nutrient lakes in northeastern North America, in an in situ mesocosm experiment. We observed that many phytoplankton taxa, especially diatoms and green algae, responded primarily to increased nutrient availability (a result of Gloeotrichia's nitrogen fixation and translocation of phosphorus from the sediments), while a few taxa (two euglenophytes, one dinoflagellate, and one cyanobacterium) responded to both the direct and indirect effects of Gloeotrichia. Surprisingly, Gloeotrichia reduced the compositional variability of the phytoplankton community relative to the non‐Gloeotrichia control treatment; there was no effect on the aggregate temporal variability of total non‐Gloeotrichia biovolume. Moreover, experimentally increased densities of Gloeotrichia coincided with increasing complexity of the phytoplankton community in network analyses of taxon co‐occurrences, as indicated by significantly greater network density and transitivity and shorter path lengths. Taken together, these findings suggest that Gloeotrichia may be a strongly interacting species in low‐nutrient lakes, with the potential to increase the resilience of phytoplankton communities to future disturbance by increasing compositional stability and network complexity.
- Differential Responses of Maximum Versus Median Chlorophyll‐a to Air Temperature and Nutrient Loads in an Oligotrophic Lake Over 31 YearsWard, Nicole K.; Steele, Bethel G.; Weathers, Kathleen C.; Cottingham, Kathryn L.; Ewing, Holly A.; Hanson, Paul C.; Carey, Cayelan C. (AGU, 2020-05-28)Globally, phytoplankton abundance is increasing in lakes as a result of climate change and land‐use change. The relative importance of climate and land‐use drivers has been examined primarily for mesotrophic and eutrophic lakes. However, oligotrophic lakes show different sensitivity to climate and land‐use drivers than mesotrophic and eutrophic lakes, necessitating further exploration of the relative contribution of the two drivers of change to increased phytoplankton abundance. Here, we investigated how air temperature (a driver related to climate change) and nutrient load (a driver related to land‐use and climate change) interact to alter water quality in oligotrophic Lake Sunapee, New Hampshire, USA. We used long‐term data and the one‐dimensional hydrodynamic General Lake Model (GLM) coupled with Aquatic EcoDyanmics (AED) modules to simulate water quality. Over the 31‐year simulation, summer median chlorophyll‐a concentration was positively associated with summer air temperature, whereas annual maximum chlorophyll‐a concentration was positively associated with the previous 3 years of external phosphorus load. Scenario testing demonstrated a 2°C increase in air temperature significantly increased summer median chlorophyll‐a concentration, but not annual maximum chlorophyll‐a concentration. For both maximum and median chlorophyll‐a concentration, doubling external nutrient loads of total nitrogen and total phosphorus at the same time, or doubling phosphorus alone, resulted in a significant increase. This study highlights the importance of aligning lake measurements with the ecosystem metrics of interest, as maximum chlorophyll‐a concentration may be more uniquely sensitive to nutrient load and that typical summer chlorophyll‐a concentration may increase due to warming alone.
- The drivers of freshwater reservoir biogeochemical cycling and greenhouse gas emissions in a changing worldMcClure, Ryan Paul (Virginia Tech, 2020-09-29)Freshwater reservoirs store, process, and emit to the atmosphere large quantities of carbon (C). Despite the important role of reservoirs in the global carbon cycle, it remains unknown how human activities are altering their carbon cycling. Climate change and land use are resulting in lower dissolved oxygen (DO) concentrations in freshwater ecosystems, yet more frequent, powerful storms are occurring that temporarily increase DO availability. The net effect of these opposing forces results in anoxia (DO < 0.5 mg L-1) punctuated by short-term increases in DO. The availability of DO controls alternate redox reactions in freshwaters, thereby determining the rate and end products of organic C mineralization, which include two greenhouse gases, carbon dioxide (CO2) and methane (CH4). I performed ecosystem-level DO manipulations and evaluated how changing DO conditions affected redox reactions and the production and emission of CO2 and CH4. I also explored how the magnitude and drivers of CH4 emissions changed spatio-temporarily in a eutrophic reservoir using time series models. Finally, I used a coupled data-modeling approach to forecast future emissions of CH4 from the same reservoir. I found that the depletion of DO results in the rapid onset of alternate redox reactions in freshwater reservoirs for organic C mineralization and greater production of CH4. When the anoxia occurred in the water column (vs. at the sediments), diffusive CO2 and CH4 efflux phenology was affected, and resulted in degassing occurring during storms before fall turnover. I observed that the magnitude of CH4 emissions varied along a longitudinal gradient of a small reservoir and that the environmental drivers of ebullition and diffusion can change substantially both over space (within one hundred meters) and time (within a few weeks). Finally, I developed a forecasting workflow that successfully predicted future CH4 ebullition rates during one summer season. My research provides insight to how changing DO conditions will alter redox reactions in the water column and greenhouse gas emissions, as well as provides a new technique for improving future predictions of CH4 emissions from freshwater reservoirs. Althogether, this work improves our understanding of how freshwater lake and reservoir carbon cycling will change in the future.
- Dynamics of the stream-lake transitional zone affect littoral lake metabolismWard, Nicole K.; Brentrup, Jennifer A.; Richardson, David C.; Weathers, Kathleen C.; Hanson, Paul C.; Hewett, Russell J.; Carey, Cayelan C. (Springer, 2022-07)Lake ecosystems, as integrators of watershed and climate stressors, are sentinels of change. However, there is an inherent time-lag between stressors and whole-lake response. Aquatic metabolism, including gross primary production (GPP) and respiration (R), of stream-lake transitional zones may bridge the time-lag of lake response to allochthonous inputs. In this study, we used high-frequency dissolved oxygen data and inverse modeling to estimate daily rates of summer epilimnetic GPP and R in a nutrient-limited oligotrophic lake at two littoral sites located near different major inflows and at a pelagic site. We examined the relative importance of stream variables in comparison to meteorological and in-lake predictors of GPP and R. One of the inflow streams was substantially warmer than the other and primarily entered the lake's epilimnion, whereas the colder stream primarily mixed into the metalimnion or hypolimnion. Maximum GPP and R rates were 0.2-2.5 mg O-2 L-1 day(-1) (9-670%) higher at littoral sites than the pelagic site. Ensemble machine learning analyses revealed that > 30% of variability in daily littoral zone GPP and R was attributable to stream depth and stream-lake transitional zone mixing metrics. The warm-stream inflow likely stimulated littoral GPP and R, while the cold-stream inflow only stimulated littoral zone GPP and R when mixing with the epilimnion. The higher GPP and R observed near inflows in our study may provide a sentinel-of-the-sentinel signal, bridging the time-lag between stream inputs and in-lake processing, enabling an earlier indication of whole-lake response to upstream stressors.
- Ecology under lake iceHampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H.; North, Rebecca L.; Stockwell, Jason D.; Adrian, Rita; Weyhenmeyer, Gesa A.; Arvola, Lauri; Baulch, Helen M.; Bertani, Isabella; Bowman, Larry L., Jr.; Carey, Cayelan C.; Catalan, Jordi; Colom-Montero, William; Domine, Leah M.; Felip, Marisol; Granados, Ignacio; Gries, Corinna; Grossart, Hans-Peter; Haberman, Juta; Haldna, Marina; Hayden, Brian; Higgins, Scott N.; Jolley, Jeff C.; Kahilainen, Kimmo K.; Kaup, Enn; Kehoe, Michael J.; MacIntyre, Sally; Mackay, Anson W.; Mariash, Heather L.; McKay, Robert M.; Nixdorf, Brigitte; Noges, Peeter; Noges, Tiina; Palmer, Michelle; Pierson, Don C.; Post, David M.; Pruett, Matthew J.; Rautio, Milla; Read, Jordan S.; Roberts, Sarah L.; Ruecker, Jacqueline; Sadro, Steven; Silow, Eugene A.; Smith, Derek E.; Sterner, Robert W.; Swann, George E. A.; Timofeyev, Maxim A.; Toro, Manuel; Twiss, Michael R.; Vogt, Richard J.; Watson, Susan B.; Whiteford, Erika J.; Xenopoulos, Marguerite A. (2017-01)Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.
- Eddy Covariance Data Reveal That a Small Freshwater Reservoir Emits a Substantial Amount of Carbon Dioxide and MethaneHounshell, Alexandria G.; D'Acunha, Brenda M.; Breef-Pilz, Adrienne; Johnson, Mark S.; Thomas, R. Quinn; Carey, Cayelan C. (American Geophysical Union, 2023-03-14)Small freshwater reservoirs are ubiquitous and likely play an important role in global greenhouse gas (GHG) budgets relative to their limited water surface area. However, constraining annual GHG fluxes in small freshwater reservoirs is challenging given their footprint area and spatially and temporally variable emissions. To quantify the GHG budget of a small (0.1 km2) reservoir, we deployed an Eddy covariance (EC) system in a small reservoir located in southwestern Virginia, USA over 2 years to measure carbon dioxide (CO2) and methane (CH4) fluxes near-continuously. Fluxes were coupled with in situ sensors measuring multiple environmental parameters. Over both years, we found the reservoir to be a large source of CO2 (633–731 g CO2-C m−2 yr−1) and CH4 (1.02–1.29 g CH4-C m−2 yr−1) to the atmosphere, with substantial sub-daily, daily, weekly, and seasonal timescales of variability. For example, fluxes were substantially greater during the summer thermally stratified season as compared to the winter. In addition, we observed significantly greater GHG fluxes during winter intermittent ice-on conditions as compared to continuous ice-on conditions, suggesting GHG emissions from lakes and reservoirs may increase with predicted decreases in winter ice-cover. Finally, we identified several key environmental variables that may be driving reservoir GHG fluxes at multiple timescales, including, surface water temperature and thermocline depth followed by fluorescent dissolved organic matter. Overall, our novel year-round EC data from a small reservoir indicate that these freshwater ecosystems likely contribute a substantial amount of CO2 and CH4 to global GHG budgets, relative to their surface area.
- The effects of hypolimnetic anoxia on the diel vertical migration of freshwater crustacean zooplanktonDoubek, Jonathan P.; Campbell, Kylie L.; Doubek, Kaitlyn M.; Hamre, Kathleen D.; Lofton, Mary E.; McClure, Ryan P.; Ward, Nicole K.; Carey, Cayelan C. (Ecological Society of America, 2018-07)Lakes and reservoirs worldwide are increasingly experiencing depletion of dissolved oxygen (anoxia) in their bottom waters (the hypolimnion) because of climate change and eutrophication, which is altering the dynamics of many freshwater ecological communities. Hypolimnetic anoxia may substantially alter the daily migration and distribution of zooplankton, the dominant grazers of phytoplankton in aquatic food webs. In waterbodies with oxic hypolimnia, zooplankton exhibit diel vertical migration (DVM), in which they migrate to the dark hypolimnion during the day to escape fish predation or ultraviolet (UV) radiation damage in the well-lit surface waters (the epilimnion). However, due to the physiologically stressful conditions of anoxic hypolimnia, we hypothesized that zooplankton may be forced to remain in the epilimnion during daylight, trading oxic stress for increased predation risk or UV radiation damage. To examine how anoxia impacts zooplankton vertical migration, distribution, biomass, and community composition over day-night periods, we conducted multiple diel sampling campaigns on reservoirs that spanned oxic, hypoxic, and anoxic hypolimnetic conditions. In addition, we sampled the same reservoirs fortnightly during the daytime to examine the vertical position of zooplankton throughout the summer stratified season. Under anoxic conditions, most zooplankton taxa were predominantly found in the epil-imnion during the day and night, did not exhibit DVM, and had lower seasonal biomass than in reservoirs with oxic hypolimnia. Only the phantom midge larva, Chaoborus spp., was consistently anoxia-tolerant. Consequently, our results suggest that hypolimnetic anoxia may alter zooplankton migration, biomass, and behavior, which may in turn exacerbate water quality degradation due to the critical role zooplankton play in freshwater ecosystems.
- The effects of hypolimnetic oxygenation on the chemical, physical, and biological properties of a shallow drinking water reservoirBrowne, Richard Gregory (Virginia Tech, 2013-09-20)Hypolimnetic anoxia can result in higher internal phosphorus (P) loads from the sediments to the water column, thereby increasing nutrient availability, making preventing anoxia a major goal for lake managers to improve water quality. Side-stream saturation (SSS), a type of hypolimnetic oxygenation system, has been developed to maintain oxygenated conditions at the sediments by withdrawing oxygen-depleted water from the hypolimnion to an on-site facility and injecting it with oxygen under high pressure before returning it to the hypolimnion. While this technique has been studied in select water bodies, to date it has not been successfully deployed in a shallow lake. This study investigated the effects of an SSS system deployed at Falling Creek Reservoir, a shallow drinking water reservoir located in Vinton, Virginia, USA. Specifically, we examined the effects of the SSS system on several chemical, physical, and biological response variables to ascertain the short-term impacts of hypolimnetic oxygenation on reservoir water quality. We found that the SSS system was successful in increasing dissolved oxygen concentrations in the reservoir hypolimnion without weakening stratification, warming the sediments, or increasing turbidity; however, we were unable to detect any short-term effects of SSS operation on P concentrations, P loading, pH, chlorophyll a, or algal density. Interestingly, we also observed an increase in oxygen demand in response to SSS operation, which must be taken into account when deploying oxygenation systems in the future. Continued monitoring is necessary to more completely assess the long-term impacts of SSS operation on water quality at Falling Creek Reservoir.
- The Effects of Hypoxia on Zooplankton Communities in Lakes and ReservoirsDoubek, Jonathan Patrick (Virginia Tech, 2018-06-19)Global change is altering the community composition, variability, and behavior of organisms in a diverse suite of ecosystems. Because of climate change and eutrophication, freshwater lakes and reservoirs are experiencing an increase in low dissolved oxygen concentrations (hypoxia) in their bottom waters (hypolimnion), which can disrupt ecological communities. Zooplankton, important aquatic organisms for regulating water quality and food webs, are one group of organisms affected by hypoxia since zooplankton need oxygen to respire. My research shows that hypoxia may disrupt zooplankton behavior and increase the variability of zooplankton communities. Zooplankton ubiquitously exhibit diel vertical migration, where the majority of the population resides in the hypolimnion during the daytime to escape predation from fish and damage from ultraviolet radiation. At night, many zooplankton ascend to the surface waters to feed on phytoplankton, when there is decreased risk of predation and radiation. My results from intensive 24-hour sampling campaigns suggest that hypolimnetic hypoxia may alter zooplankton migration, biomass, and behavior, which may in turn exacerbate water quality degradation due to the critical role zooplankton play in freshwater ecosystems. In addition, field surveys in four reservoirs over three years revealed that hypoxia may increase the variability of zooplankton communities compared to oxic conditions. Consequently, as lakes and reservoirs experience increased extent and duration of hypoxia in the future, it is critical to understand how more variable zooplankton communities alter freshwater ecosystem functioning.