The drivers of freshwater reservoir biogeochemical cycling and greenhouse gas emissions in a changing world
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Freshwater reservoirs store, process, and emit to the atmosphere large quantities of carbon (C). Despite the important role of reservoirs in the global carbon cycle, it remains unknown how human activities are altering their carbon cycling. Climate change and land use are resulting in lower dissolved oxygen (DO) concentrations in freshwater ecosystems, yet more frequent, powerful storms are occurring that temporarily increase DO availability. The net effect of these opposing forces results in anoxia (DO < 0.5 mg L-1) punctuated by short-term increases in DO. The availability of DO controls alternate redox reactions in freshwaters, thereby determining the rate and end products of organic C mineralization, which include two greenhouse gases, carbon dioxide (CO2) and methane (CH4). I performed ecosystem-level DO manipulations and evaluated how changing DO conditions affected redox reactions and the production and emission of CO2 and CH4. I also explored how the magnitude and drivers of CH4 emissions changed spatio-temporarily in a eutrophic reservoir using time series models. Finally, I used a coupled data-modeling approach to forecast future emissions of CH4 from the same reservoir. I found that the depletion of DO results in the rapid onset of alternate redox reactions in freshwater reservoirs for organic C mineralization and greater production of CH4. When the anoxia occurred in the water column (vs. at the sediments), diffusive CO2 and CH4 efflux phenology was affected, and resulted in degassing occurring during storms before fall turnover. I observed that the magnitude of CH4 emissions varied along a longitudinal gradient of a small reservoir and that the environmental drivers of ebullition and diffusion can change substantially both over space (within one hundred meters) and time (within a few weeks). Finally, I developed a forecasting workflow that successfully predicted future CH4 ebullition rates during one summer season. My research provides insight to how changing DO conditions will alter redox reactions in the water column and greenhouse gas emissions, as well as provides a new technique for improving future predictions of CH4 emissions from freshwater reservoirs. Althogether, this work improves our understanding of how freshwater lake and reservoir carbon cycling will change in the future.