Browsing by Author "Chen, Zhiqian"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural NetworksChen, Zhiqian; Chen, Fanglan; Zhang, Lei; Ji, Taoran; Fu, Kaiqun; Zhao, Liang; Chen, Feng; Wu, Lingfei; Aggarwal, Charu; Lu, Chang-Tien (ACM, 2023-10)Deep learning's performance has been extensively recognized recently. Graph neural networks (GNNs) are designed to deal with graph-structural data that classical deep learning does not easily manage. Since most GNNs were created using distinct theories, direct comparisons are impossible. Prior research has primarily concentrated on categorizing existing models, with little attention paid to their intrinsic connections. The purpose of this study is to establish a unified framework that integrates GNNs based on spectral graph and approximation theory. The framework incorporates a strong integration between spatial- and spectral-based GNNs while tightly associating approaches that exist within each respective domain.
- Citation Forecasting with Multi-Context Attention-Aided Dependency ModelingJi, Taoran; Self, Nathan; Fu, Kaiqun; Chen, Zhiqian; Ramakrishnan, Naren; Lu, Chang-Tien (ACM, 2024)Forecasting citations of scientific patents and publications is a crucial task for understanding the evolution and development of technological domains and for foresight into emerging technologies. By construing citations as a time series, the task can be cast into the domain of temporal point processes. Most existing work on forecasting with temporal point processes, both conventional and neural network-based, only performs single-step forecasting. In citation forecasting, however, the more salient goal is n-step forecasting: predicting the arrival of the next n citations. In this paper, we propose Dynamic Multi-Context Attention Networks (DMA-Nets), a novel deep learning sequence-to-sequence (Seq2Seq) model with a novel hierarchical dynamic attention mechanism for long-term citation forecasting. Extensive experiments on two real-world datasets demonstrate that the proposed model learns better representations of conditional dependencies over historical sequences compared to state-of-the-art counterparts and thus achieves significant performance for citation predictions.
- Deep Graph Learning for Circuit DeobfuscationChen, Zhiqian; Zhang, Lei; Kolhe, Gaurav; Kamali, Hadi Mardani; Rafatirad, Setareh; Pudukotai Dinakarrao, Sai Manoj; Homayoun, Houman; Lu, Chang-Tien; Zhao, Liang (2021-05-24)Circuit obfuscation is a recently proposed defense mechanism to protect the intellectual property (IP) of digital integrated circuits (ICs) from reverse engineering. There have been effective schemes, such as satisfiability (SAT)-checking based attacks that can potentially decrypt obfuscated circuits, which is called deobfuscation. Deobfuscation runtime could be days or years, depending on the layouts of the obfuscated ICs. Hence, accurately pre-estimating the deobfuscation runtime within a reasonable amount of time is crucial for IC designers to optimize their defense. However, it is challenging due to (1) the complexity of graph-structured circuit; (2) the varying-size topology of obfuscated circuits; (3) requirement on efficiency for deobfuscation method. This study proposes a framework that predicts the deobfuscation runtime based on graph deep learning techniques to address the challenges mentioned above. A conjunctive normal form (CNF) bipartite graph is utilized to characterize the complexity of this SAT problem by analyzing the SAT attack method. Multi-order information of the graph matrix is designed to identify the essential features and reduce the computational cost. To overcome the difficulty in capturing the dynamic size of the CNF graph, an energy-based kernel is proposed to aggregate dynamic features into an identical vector space. Then, we designed a framework, Deep Survival Analysis with Graph (DSAG), which integrates energy-based layers and predicts runtime inspired by censored regression in survival analysis. Integrating uncensored data with censored data, the proposed model improves the standard regression significantly. DSAG is an end-to-end framework that can automatically extract the determinant features for deobfuscation runtime. Extensive experiments on benchmarks demonstrate its effectiveness and efficiency.
- DIMPL: a distributed in-memory drone flight path builder systemShukla, Manu; Chen, Zhiqian; Lu, Chang-Tien (2018-07-12)Drones are increasingly being used to perform risky and labor intensive aerial tasks cheaply and safely. To ensure operating costs are low and flights autonomous, their flight plans must be pre-built. In existing techniques drone flight paths are not automatically pre-calculated based on drone capabilities and terrain information. Instead, they focus on adaptive shortest paths, manually determined paths, navigation through camera, images and/or GPS for guidance and genetic or geometric algorithms to guide the drone during flight, all of which makes flight navigation complex and risky. In this paper we present details of an automated flight plan builder DIMPL that pre-builds flight plans for drones tasked with surveying a large area to take photographs of electric poles to identify ones with hazardous vegetation overgrowth. The flight plans are built for subregions allowing the drones to navigate autonomously. DIMPL employs a distributed in-memory paradigm to process subregions in parallel and build flight paths in a highly efficient manner. Experiments performed with network and elevation datasets validated the efficiency of DIMPL in building optimal flight plans for a fleet of different types of drones and demonstrated the tremendous performance improvements possible using the distributed in-memory paradigm.
- Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translationZhang, Lei; Chen, Zhiqian; Lu, Chang-Tien; Zhao, Liang (Frontiers, 2023-11-17)Numerous networks in the real world change with time, producing dynamic graphs such as human mobility networks and brain networks. Typically, the “dynamics on graphs” (e.g., changing node attribute values) are visible, and they may be connected to and suggestive of the “dynamics of graphs” (e.g., evolution of the graph topology). Due to two fundamental obstacles, modeling and mapping between them have not been thoroughly explored: (1) the difficulty of developing a highly adaptable model without solid hypotheses and (2) the ineffectiveness and slowness of processing data with varying granularity. To solve these issues, we offer a novel scalable deep echo-state graph dynamics encoder for networks with significant temporal duration and dimensions. A novel neural architecture search (NAS) technique is then proposed and tailored for the deep echo-state encoder to ensure strong learnability. Extensive experiments on synthetic and actual application data illustrate the proposed method's exceptional effectiveness and efficiency.
- Graph Neural Networks: Techniques and ApplicationsChen, Zhiqian (Virginia Tech, 2020-08-25)Effective information analysis generally boils down to the geometry of the data represented by a graph. Typical applications include social networks, transportation networks, the spread of epidemic disease, brain's neuronal networks, gene data on biological regulatory networks, telecommunication networks, knowledge graph, which are lying on the non-Euclidean graph domain. To describe the geometric structures, graph matrices such as adjacency matrix or graph Laplacian can be employed to reveal latent patterns. This thesis focuses on the theoretical analysis of graph neural networks and the development of methods for specific applications using graph representation. Four methods are proposed, including rational neural networks for jump graph signal estimation, RemezNet for robust attribute prediction in the graph, ICNet for integrated circuit security, and CNF-Net for dynamic circuit deobfuscation. For the first method, a recent important state-of-art method is the graph convolutional networks (GCN) nicely integrate local vertex features and graph topology in the spectral domain. However, current studies suffer from drawbacks: graph CNNs rely on Chebyshev polynomial approximation which results in oscillatory approximation at jump discontinuities since Chebyshev polynomials require degree $Omega$(poly(1/$epsilon$)) to approximate a jump signal such as $|x|$. To reduce complexity, RatioanlNet is proposed to integrate rational function and neural networks for graph node level embeddings. For the second method, we propose a method for function approximation which suffers from several drawbacks: non-robustness and infeasibility issue; neural networks are incapable of extracting analytical representation; there is no study reported to integrate the superiorities of neural network and Remez. This work proposes a novel neural network model to address the above issues. Specifically, our method utilizes the characterizations of Remez to design objective functions. To avoid the infeasibility issue and deal with the non-robustness, a set of constraints are imposed inspired by the equioscillation theorem of best rational approximation. The third method proposes an approach for circuit security. Circuit obfuscation is a recently proposed defense mechanism to protect digital integrated circuits (ICs) from reverse engineering. Estimating the deobfuscation runtime is a challenging task due to the complexity and heterogeneity of graph-structured circuit, and the unknown and sophisticated mechanisms of the attackers for deobfuscation. To address the above-mentioned challenges, this work proposes the first graph-based approach that predicts the deobfuscation runtime based on graph neural networks. The fourth method proposes a representation for dynamic size of circuit graph. By analyzing SAT attack method, a conjunctive normal form (CNF) bipartite graph is utilized to characterize the complexity of this SAT problem. To overcome the difficulty in capturing the dynamic size of the CNF graph, an energy-based kernel is proposed to aggregate dynamic features.
- Memetic algorithms for Spatial Partitioning problemsBiswas, Subhodip; Chen, Fanglan; Chen, Zhiqian; Lu, Chang-Tien; Ramakrishnan, Naren (ACM)Spatial optimization problems (SOPs) are characterized by spatial relationships governing the decision variables, objectives, and/or constraint functions. In this article, we focus on a specific type of SOP called spatial partitioning, which is a combinatorial problem due to the presence of discrete spatial units. Exact optimization methods do not scale with the size of the problem, especially within practicable time limits. This motivated us to develop population-based metaheuristics for solving such SOPs. However, the search operators employed by these population-based methods are mostly designed for real-parameter continuous optimization problems. For adapting these methods to SOPs, we apply domain knowledge in designing spatially-aware search operators for efficiently searching through the discrete search space while preserving the spatial constraints. To this end, we put forward a simple yet effective algorithm called SPATIAL and test it on the school (re)districting problem. Detailed experimental investigations are performed on real-world datasets to evaluate the performance of SPATIAL. Besides, ablation studies are performed to understand the role of the individual components of SPATIAL. Additionally, we discuss how SPATIAL is helpful in the real-life planning process, its applicability to different scenarios, and motivate future research directions.
- Unsupervised discovery of solid-state lithium ion conductorsZhang, Ying; He, Xingfeng; Chen, Zhiqian; Bai, Qiang; Nolan, Adelaide M.; Roberts, Charles A.; Banerjee, Debasish; Matsunaga, Tomoya; Mo, Yifei; Ling, Chen (2019-11-20)Although machine learning has gained great interest in the discovery of functional materials, the advancement of reliable models is impeded by the scarcity of available materials property data. Here we propose and demonstrate a distinctive approach for materials discovery using unsupervised learning, which does not require labeled data and thus alleviates the data scarcity challenge. Using solid-state Li-ion conductors as a model problem, unsupervised materials discovery utilizes a limited quantity of conductivity data to prioritize a candidate list from a wide range of Li-containing materials for further accurate screening. Our unsupervised learning scheme discovers 16 new fast Li-conductors with conductivities of 10(-4)-10(-1) S cm(-1) predicted in ab initio molecular dynamics simulations. These compounds have structures and chemistries distinct to known systems, demonstrating the capability of unsupervised learning for discovering materials over a wide materials space with limited property data.