Graph Neural Networks: Techniques and Applications
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Effective information analysis generally boils down to the geometry of the data represented by a graph. Typical applications include social networks, transportation networks, the spread of epidemic disease, brain's neuronal networks, gene data on biological regulatory networks, telecommunication networks, knowledge graph, which are lying on the non-Euclidean graph domain. To describe the geometric structures, graph matrices such as adjacency matrix or graph Laplacian can be employed to reveal latent patterns. This thesis focuses on the theoretical analysis of graph neural networks and the development of methods for specific applications using graph representation. Four methods are proposed, including rational neural networks for jump graph signal estimation, RemezNet for robust attribute prediction in the graph, ICNet for integrated circuit security, and CNF-Net for dynamic circuit deobfuscation.
For the first method, a recent important state-of-art method is the graph convolutional networks (GCN) nicely integrate local vertex features and graph topology in the spectral domain. However, current studies suffer from drawbacks: graph CNNs rely on Chebyshev polynomial approximation which results in oscillatory approximation at jump discontinuities since Chebyshev polynomials require degree