Browsing by Author "Choudhary, Nurendra"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Accepted Tutorials at The Web Conference 2022Tommasini, Riccardo; Basu Roy, Senjuti; Wang, Xuan; Wang, Hongwei; Ji, Heng; Han, Jiawei; Nakov, Preslav; Da San Martino, Giovanni; Alam, Firoj; Schedl, Markus; Lex, Elisabeth; Bharadwaj, Akash; Cormode, Graham; Dojchinovski, Milan; Forberg, Jan; Frey, Johannes; Bonte, Pieter; Balduini, Marco; Belcao, Matteo; Della Valle, Emanuele; Yu, Junliang; Yin, Hongzhi; Chen, Tong; Liu, Haochen; Wang, Yiqi; Fan, Wenqi; Liu, Xiaorui; Dacon, Jamell; Lye, Lingjuan; Tang, Jiliang; Gionis, Aristides; Neumann, Stefan; Ordozgoiti, Bruno; Razniewski, Simon; Arnaout, Hiba; Ghosh, Shrestha; Suchanek, Fabian; Wu, Lingfei; Chen, Yu; Li, Yunyao; Liu, Bang; Ilievski, Filip; Garijo, Daniel; Chalupsky, Hans; Szekely, Pedro; Kanellos, Ilias; Sacharidis, Dimitris; Vergoulis, Thanasis; Choudhary, Nurendra; Rao, Nikhil; Subbian, Karthik; Sengamedu, Srinivasan; Reddy, Chandan; Victor, Friedhelm; Haslhofer, Bernhard; Katsogiannis- Meimarakis, George; Koutrika, Georgia; Jin, Shengmin; Koutra, Danai; Zafarani, Reza; Tsvetkov, Yulia; Balachandran, Vidhisha; Kumar, Sachin; Zhao, Xiangyu; Chen, Bo; Guo, Huifeng; Wang, Yejing; Tang, Ruiming; Zhang, Yang; Wang, Wenjie; Wu, Peng; Feng, Fuli; He, Xiangnan (ACM, 2022-04-25)This paper summarizes the content of the 20 tutorials that have been given at The Web Conference 2022: 85% of these tutorials are lecture style, and 15% of these are hands on.
- ANTHEM: Attentive Hyperbolic Entity Model for Product SearchChoudhary, Nurendra; Rao, Nikhil; Katariya, Sumeet; Subbian, Karthik; Reddy, Chandan K. (ACM, 2022-02-11)Product search is a fundamentally challenging problem due to the large-size of product catalogues and the complexity of extracting semantic information from products. In addition to this, the blackbox nature of most search systems also hamper a smooth customer experience. Current approaches in this area utilize lexical and semantic product information to match user queries against products. However, these models lack (i) a hierarchical query representation, (ii) a mechanism to detect and capture inter-entity relationships within a query, and (iii) a query composition method specific to e-commerce domain. To address these challenges, in this paper, we propose an AtteNTive Hyperbolic Entity Model (ANTHEM), a novel attention-based product search framework that models query entities as two-vector hyperboloids, learns inter-entity intersections and utilizes attention to unionize individual entities and inter-entity intersections to predict product matches from the search space. ANTHEM utilizes the first and second vector of hyperboloids to determine the query’s semantic position and to tune its surrounding search volume, respectively. The attention networks capture the significance of intra-entity and inter-entity intersections to the final query space. Additionally, we provide a mechanism to comprehend ANTHEM and understand the significance of query entities towards the final resultant products. We evaluate the performance of our model on real data collected from popular e-commerce sites. Our experimental study on the offline data demonstrates compelling evidence of ANTHEM’s superior performance over state-of-the-art product search methods with an improvement of more than 10% on various metrics. We also demonstrate the quality of ANTHEM’s query encoder using a query matching task.
- GraphZoo: A Development Toolkit for Graph Neural Networks with Hyperbolic GeometriesVyas, Anoushka; Choudhary, Nurendra; Khatir, Mehrdad; Reddy, Chandan (ACM, 2022-04-25)Hyperbolic spaces have recently gained prominence for representation learning in graph processing tasks such as link prediction and node classification. Several Euclidean graph models have been adapted to work in the hyperbolic space and the variants have shown a significant increase in performance. However, research and development in graph modeling currently involve several tedious tasks with a scope of standardization including data processing, parameter configuration, optimization tricks, and unavailability of public codebases. With the proliferation of new tasks such as knowledge graph reasoning and generation, there is a need in the community for a unified framework that eases the development and analysis of both Euclidean and hyperbolic graph networks, especially for new researchers in the field. To this end, we present a novel framework, GraphZoo, that makes learning, designing and applying graph processing pipelines/models systematic through abstraction over the redundant components. The framework contains a versatile library that supports several hyperbolic manifolds and an easy-to-use modular framework to perform graph processing tasks which aids researchers in different components, namely, (i) reproduce evaluation pipelines of state-of-the-art approaches, (ii) design new hyperbolic or Euclidean graph networks and compare them against the state-of-the-art approaches on standard benchmarks, (iii) add custom datasets for evaluation, (iv) add new tasks and evaluation criteria.
- An Interpretable Ensemble of Graph and Language Models for Improving Search Relevance in E-CommerceChoudhary, Nurendra; Huang, Edward W.; Subbian, Karthik; Reddy, Chandan (ACM, 2024-05-13)The problem of search relevance in the E-commerce domain is a challenging one since it involves understanding the intent of a user’s short nuanced query and matching it with the appropriate products in the catalog. This problem has traditionally been addressed using language models (LMs) and graph neural networks (GNNs) to capture semantic and inter-product behavior signals, respectively. However, the rapid development of new architectures has created a gap between research and the practical adoption of these techniques. Evaluating the generalizability of these models for deployment requires extensive experimentation on complex, real-world datasets, which can be non-trivial and expensive. Furthermore, such models often operate on latent space representations that are incomprehensible to humans, making it difficult to evaluate and compare the effectiveness of different models. This lack of interpretability hinders the development and adoption of new techniques in the field. To bridge this gap, we propose Plug and Play Graph LAnguage Model (PP-GLAM), an explainable ensemble of plug and play models. Our approach uses a modular framework with uniform data processing pipelines. It employs additive explanation metrics to independently decide whether to include (i) language model candidates, (ii) GNN model candidates, and (iii) inter-product behavioral signals. For the task of search relevance, we show that PP-GLAM outperforms several state-of-the-art baselines as well as a proprietary model on real-world multilingual, multi-regional e-commerce datasets. To promote better model comprehensibility and adoption, we also provide an analysis of the explainability and computational complexity of our model. We also provide the public codebase and provide a deployment strategy for practical implementation.
- Multimodal Representation Learning for Textual Reasoning over Knowledge GraphsChoudhary, Nurendra (Virginia Tech, 2023-05-18)Knowledge graphs (KGs) store relational information in a flexible triplet schema and have become ubiquitous for information storage in domains such as web search, e-commerce, social networks, and biology. Retrieval of information from KGs is generally achieved through logical reasoning, but this process can be computationally expensive and has limited performance due to the large size and complexity of relationships within the KGs. Furthermore, to extend the usage of KGs to non-expert users, retrieval over them cannot solely rely on logical reasoning but also needs to consider text-based search. This creates a need for multi-modal representations that capture both the semantic and structural features from the KGs. The primary objective of the proposed work is to extend the accessibility of KGs to non-expert users/institutions by enabling them to utilize non-technical textual queries to search over the vast amount of information stored in KGs. To achieve this objective, the research aims to solve four limitations: (i) develop a framework for logical reasoning over KGs that can learn representations to capture hierarchical dependencies between entities, (ii) design an architecture that can effectively learn the logic flow of queries from natural language text, (iii) create a multi-modal architecture that can capture inherent semantic and structural features from the entities and KGs, respectively, and (iv) introduce a novel hyperbolic learning framework to enable the scalability of hyperbolic neural networks over large graphs using meta-learning. The proposed work is distinct from current research because it models the logical flow of textual queries in hyperbolic space and uses it to perform complex reasoning over large KGs. The models developed in this work are evaluated on both the standard research setting of logical reasoning, as well as, real-world scenarios of query matching and search, specifically, in the e-commerce domain. In summary, the proposed work aims to extend the accessibility of KGs to non-expert users by enabling them to use non-technical textual queries to search vast amounts of information stored in KGs. To achieve this objective, the work proposes the use of multi-modal representations that capture both semantic and structural features from the KGs, and a novel hyperbolic learning framework to enable scalability of hyperbolic neural networks over large graphs. The work also models the logical flow of textual queries in hyperbolic space to perform complex reasoning over large KGs. The models developed in this work are evaluated on both the standard research setting of logical reasoning and real-world scenarios in the e-commerce domain.
- Probabilistic Entity Representation Model for Reasoning over Knowledge GraphsChoudhary, Nurendra; Rao, Nikhil; Katariya, Sumeet; Subbian, Karthik; Reddy, Chandan K. (2021-10-26)Logical reasoning over Knowledge Graphs (KGs) is a fundamental technique that can provide efficient querying mechanism over large and incomplete databases. Current approaches employ spatial geometries such as boxes to learn query representations that encompass the answer entities and model the logical operations of projection and intersection. However, their geometry is restrictive and leads to non-smooth strict boundaries, which further results in ambiguous answer entities. Furthermore, previous works propose transformation tricks to handle unions which results in non-closure and, thus, cannot be chained in a stream. In this paper, we propose a Probabilistic Entity Representation Model (PERM) to encode entities as a Multivariate Gaussian density with mean and covariance parameters to capture its semantic position and smooth decision boundary, respectively. Additionally, we also define the closed logical operations of projection, intersection, and union that can be aggregated using an end-to-end objective function. On the logical query reasoning problem, we demonstrate that the proposed PERM significantly outperforms the state-of-the-art methods on various public benchmark KG datasets on standard evaluation metrics. We also evaluate PERM’s competence on a COVID-19 drugrepurposing case study and show that our proposed work is able to recommend drugs with substantially better F1 than current methods. Finally, we demonstrate the working of our PERM’s query answering process through a low-dimensional visualization of the Gaussian representations.
- Self-supervised Short Text Modeling through Auxiliary Context GenerationChoudhary, Nurendra; Aggarwal, Charu; Subbian, Karthik; Reddy, Chandan K. (ACM, 2022-04-12)Short text is ambiguous and often relies predominantly on the domain and context at hand in order to attain semantic relevance. Existing classification models perform poorly on short text due to data sparsity and inadequate context. Auxiliary context, which can often provide sufficient background regarding the domain, is typically available in several application scenarios. While some of the existing works aim to leverage real-world knowledge to enhance short text representations, they fail to place appropriate emphasis on the auxiliary context. Such models do not harness the full potential of the available context in auxiliary sources. To address this challenge, we reformulate short text classification as a dual channel self-supervised learning problem (that leverages auxiliary context) with a generation network and a corresponding prediction model. We propose a self-supervised framework, Pseudo-Auxiliary Context generation network for Short text Modeling (PACS), to comprehensively leverage auxiliary context and is jointly learned with a prediction network in an end-to-end manner. Our PACS model consists of two sub-networks: a Context Generation Network (CGN) that models the auxiliary context?s distribution and a Prediction Network (PN) to map the short text features and auxiliary context distribution to the final class label. Our experimental results on diverse datasets demonstrate that PACS outperforms formidable state-of-the-art baselines. We also demonstrate the performance of our model on cold start scenarios (where contextual information is non-existent) during prediction. Furthermore, we perform interpretability and ablation studies to analyze various representational features captured by our model and the individual contribution of its modules to the overall performance of PACS, respectively.