Browsing by Author "Collick, Amy S."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian modelsWagena, Moges B.; Goering, Dustin; Collick, Amy S.; Bock, Emily; Fuka, Daniel R.; Buda, Anthony R.; Easton, Zachary M. (2020-04)Streamflow forecasts are essential for water resources management. Although there are many methods for forecasting streamflow, real-time forecasts remain challenging. This study evaluates streamflow forecasts using a process-based model (Soil and Water Assessment Tool-Variable Source Area model-SWAT-VSA), a stochastic model (Artificial Neural Network -ANN), an Auto-Regressive Moving-Average (ARMA) model, and a Bayesian ensemble model that utilizes the SWAT-VSA, ANN, and ARMA results. Streamflow is forecast from 1 to 8 d, forced with Quantitative Precipitation Forecasts from the US National Weather Service. Of the individual models, SWAT-VSA and the ANN provide better predictions of total streamflow (NSE 0.60-0.70) and peak flow, but underpredicted low flows. During the forecast period the ANN had the highest predictive power (NSE 0.44-0.64), however all three models underpredicted peak flow. The Bayesian ensemble forecast streamflow with the most skill for all forecast lead times (NSE 0.49-0.67) and provided a quantification of prediction uncertainty.
- Factors When Considering an Agricultural Drainage SystemEaston, Zachary M.; Bock, Emily; Collick, Amy S. (Virginia Cooperative Extension, 2017-02-23)A well designed drainage system can improve crop yield, and lower the variation in crop yield by removing excess water in the soil.
- Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USAWagena, Moges B.; Collick, Amy S.; Ross, Andrew C.; Najjar, Raymond G.; Rau, Benjamin; Sommerlot, Andrew R.; Fuka, Daniel R.; Kleinman, Peter J. A.; Easton, Zachary M. (2018-10-01)Nutrient export from agricultural landscapes is a water quality concern and the cause of mitigation activities worldwide. Climate change impacts hydrology and nutrient cycling by changing soil moisture, stoichiometric nutrient ratios, and soil temperature, potentially complicating mitigation measures. This research quantifies the impact of climate change and climate anomalies on hydrology, nutrient cycling, and greenhouse gas emissions in an agricultural catchment of the Chesapeake Bay watershed. We force a calibrated model with seven downscaled and bias-corrected regional climate models and derived climate anomalies to assess their impact on hydrology and the export of nitrate (NO3-), phosphorus (P), and sediment, and emissions of nitrous oxide (N2O) and di-nitrogen (N-2). Modelaverage (+/- standard deviation) results indicate that climate change, through an increase in precipitation and temperature, will result in substantial increases in winter/spring flow (10.6 +/- 12.3%), NO3-(17.3 +/- 6.4%), dissolved P (32.3 +/- 18.4%), total P (24.8 +/- 16.9%), and sediment (25.2 +/- 16.6%) export, and a slight increases in N2O (0.3 +/- 4.8%) and N-2 (0.2 +/- 11.8%) emissions. Conversely, decreases in summer flow (-29.1 +/- 24.6%) and the export of dissolved P (-15.5 +/- 26.4%), total P (-16.3 +/- 20.7%), sediment (-20.7 +/- 18.3%), and NO3-(-29.1 +/- 27.8%) are driven by greater evapotranspiration from increasing summer temperatures. Decreases in N2O (-26.9 +/- 15.7%) and N-2 (-36.6 +/- 22.9%) are predicted in the summer and driven by drier soils. While the changes in flow are related directly to changes in precipitation and temperature, the changes in nutrient and sediment export are, to some extent, driven by changes in agricultural management that climate change induces, such as earlier spring tillage and altered nutrient application timing and by alterations to nutrient cycling in the soil. (C) 2018 Elsevier B.V. All rights reserved.
- Improved Simulation of Edaphic and Manure Phosphorus Loss in SWATCollick, Amy S.; Veith, Tamie L.; Fuka, Daniel R.; Kleinman, Peter J. A.; Buda, Anthony R.; Weld, Jennifer L.; Bryant, Ray B.; Vadas, Peter A.; White, Mike J.; Harmel, R. Daren; Easton, Zachary M. (2016-07)Watershed models such as the Soil Water Assessment Tool (SWAT) and the Agricultural Policy Environmental EXtender (APEX) are widely used to assess the fate and transport of agricultural nutrient management practices on soluble and particulate phosphorus (P) loss in runoff. Soil P-cycling routines used in SWAT2012 revision 586, however, do not simulate the short-term effects of applying a concentrated source of soluble P, such as manure, to the soil surface where it is most vulnerable to runoff. We added a new set of soil P routines to SWAT2012 revision 586 to simulate surface-applied manure at field and subwatershed scales within Mahantango Creek watershed in south-central Pennsylvania. We corroborated the new P routines and standard P routines in two versions of SWAT (conventional SWAT, and a topographically driven variation called TopoSWAT) for a total of four modeling "treatments". All modeling treatments included 5 yr of measured data under field-specific, historical management information. Short-term "wash off" processes resulting from precipitation immediately following surface application of manures were captured with the new P routine whereas the standard routines resulted in losses regardless of manure application. The new routines improved sensitivity to key factors in nutrient management (i.e., timing, rate, method, and form of P application). Only the new P routines indicated decreases in soluble P losses for dairy manure applications at 1, 5, and 10 d before a storm event. The new P routines also resulted in more variable P losses when applying manure versus commercial fertilizer and represented increases in total P losses, as compared with standard P routines, with rate increases in dairy manure application (56,000 to 84,000 L ha(-1)). The new P routines exhibited greater than 50% variation among proportions of organic, particulate, and soluble P corresponding to spreading method. In contrast, proportions of P forms under the standard P routines varied less than 20%. Results suggest similar revisions to other agroecosystem watershed models would be appropriate.
- Improving the spatial representation of soil properties and hydrology using topographically derived initialization processes in the SWAT modelFuka, Daniel R.; Collick, Amy S.; Kleinman, Peter J. A.; Auerbach, Daniel A.; Harmel, R. Daren; Easton, Zachary M. (2016-11-29)Topography exerts critical controls on many hydrologic, geomorphologic and biophysical processes. However, many watershed modelling systems use topographic data only to define basin boundaries and stream channels, neglecting opportunities to account for topographic controls on processes such as soil genesis, soil moisture distributions and hydrological response. Here, we demonstrate a method that uses topographic data to adjust spatial soil morphologic and hydrologic attributes: texture, depth to the C-horizon, saturated conductivity, bulk density, porosity and the water capacities at field (33 kpa) and wilting point (1500 kpa) tensions. As a proof of concept and initial performance test, the values of the topographically adjusted soil parameters and those from the Soil Survey Geographic Database (SSURGO; available at 1 : 20 000 scale) were compared with measured soil pedon pit data in the Grasslands Soil and Water Research Lab watershed in Riesel, TX. The topographically adjusted soils were better correlated with the pit measurements than were the SSURGO values. We then incorporated the topographically adjusted soils into an initialization of the Soil and Water Assessment Tool model for 15 Riesel research watersheds to investigate how changes in soil properties influence modelled hydrological responses at the field scale. The results showed that the topographically adjusted soils produced better runoff predictions in 50% of the fields, with the SSURGO soils performing better in the remainder. In addition, the a priori adjusted soils result in fewer calibrated model parameters. These results indicate that adjusting soil properties based on topography can result in more accurate soil characterization and, in some cases, improve model performance. Copyright (C) 2016 John Wiley & Sons, Ltd.
- Managing Drainage from Agricultural Lands with Denitrifying Bioreactors in the Mid-AtlanticBock, Emily; Collick, Amy S.; Easton, Zachary M. (Virginia Cooperative Extension, 2018-11-05)Discusses the use of denitrifying bioreactors (trenches or beds with organic carbon material) to remove nitrates from drainage water, and convert them to inert nitrogen. Results of this use include improved water quality.
- Phosphorus and the Chesapeake Bay: Lingering Issues and Emerging Concerns for AgricultureKleinman, Peter J. A.; Fanelli, Rosemary M.; Hirsch, Robert M.; Buda, Anthony R.; Easton, Zachary M.; Wainger, Lisa A.; Brosch, Chris; Lowenfish, Martin; Collick, Amy S.; Shirmohammadi, Adel; Boomer, Kathy; Hubbart, Jason A.; Bryant, Ray B.; Shenk, Gary W. (2019-09)Hennig Brandt's discovery of phosphorus (P) occurred during the early European colonization of the Chesapeake Bay region. Today, P, an essential nutrient on land and water alike, is one of the principal threats to the health of the bay. Despite widespread implementation of best management practices across the Chesapeake Bay watershed following the implementation in 2010 of a total maximum daily load (TMDL) to improve the health of the bay, P load reductions across the bay's 166,000-km(2) watershed have been uneven, and dissolved P loads have increased in a number of the bay's tributaries. As the midpoint of the 15-yr TMDL process has now passed, some of the more stubborn sources of P must now be tackled. For nonpoint agricultural sources, strategies that not only address particulate P but also mitigate dissolved P losses are essential. Lingering concerns include legacy P stored in soils and reservoir sediments, mitigation of P in artificial drainage and stormwater from hotspots and converted farmland, manure management and animal heavy use areas, and critical source areas of P in agricultural landscapes. While opportunities exist to curtail transport of all forms of P, greater attention is required toward adapting P management to new hydrologic regimes and transport pathways imposed by climate change.
- Pi-VAT: A web-based visualization tool for decision support using spatially complex water quality model outputsDeval, Chinmay; Brooks, Erin S.; Dobre, Mariana; Lew, Roger; Robichaud, Peter R.; Fowler, Ames; Boll, Jan; Easton, Zachary M.; Collick, Amy S. (Elsevier, 2022-04)Effective watershed management and protection of water resources from non-point source pollution require identification, prioritization, and targeting of pollutant source areas. Process-based hydrology and water quality models are powerful heuristic tools for land and water resources managers. However, because of their complexity, such models are often under-utilized as management prioritization and planning tools. In this paper, we present a prioritization, interactive visualization, and analysis tool (Pi-VAT) that is programmed to synthesize multi-scenario, multi-watershed outputs from process-based geospatial models. We demonstrate the utility of Pi VAT to examine simulated hydrologic, sediment, and water quality response at the hillslope/hydrologic response unit (HRU) scale. We apply Pi-VAT to output from multiple watersheds and for multiple management scenarios and treatments from two geospatial models for watershed management: Water Erosion Prediction Project (WEPP) and Soil & Water Assessment Tool (SWAT). Pi-VAT was developed using the Shiny web application framework for the R programming language. In a matter of minutes, Pi-VAT can synthesize overwhelming amounts of output from process-based models into information useful for land and water resources managers. We illustrate the use of Pi-VAT to interactively identify, quantify, and visualize areas that are most susceptible to disturbance under different scenarios and provide a synthesis approach based on land use, soil type, and slope steepness. This approach guides land and water resources managers in prioritizing the areas of the watershed that provide the maximum reduction in pollutant loads while treating the least amount of area. Pi-VAT provides a flexible reactive platform for the development of decision support tools based on process-based models intended for watershed management and research applications.
- Watershed model parameter estimation in low data environmentsGarna, Roja K.; Fuka, Daniel R.; Faulkner, Joshua W.; Collick, Amy S.; Easton, Zachary M. (Elsevier, 2022-12)Study region: Three watersheds in the Lake Champlain Basin of Vermont, USA. Study focus: Watershed models are essential for evaluating the impact of watershed management; however, they contain many parameters that are not directly measurable. These parameters are commonly estimated by calibration against observed data, often streamflow. Unfortunately, many areas lack long-term streamflow records, making parameter estimation in low data environments (LDE) challenging. A new calibration technique, simultaneous multi-basin calibration (MBC), was developed to estimate model parameters in LDE. Three Soil and Water Assessment Tool (SWAT) model initializations for USGS gages with ~ 2-year records in the Lake Champlain Basin of Vermont, USA, were evaluated by comparing MBC and the commonly used similarity-based regionalization (SBR) approach, where calibrated parameters from a watershed with an extended data record are transferred to the LDE receptor watersheds. In MBC, each watershed is initialized, and observed flows from each initialization are aggregated to generate a combined streamflow record of sufficient length to calibrate using a differential evolution algorithm. New hydrological insights for the region: Using this new MBC method, we demonstrate improved model performance and more realistic model parameter values. This study demonstrates that short periods of hydrological measurement from multiple locations in a basin can represent a system similarly to long term measurements and that even short records taken at multiple locations significantly improve our hydrologic knowledge of a system as compared to relying on the similarity of a basin with a long record of flow. In addition, this study revealed that the hydrologic response is mediated by the interplay of very low soil-saturated hydraulic conductivity (Ksat) and cracking soils. As a result, even if Ksat is very low, cracking clays have a large impact on runoff production Garna et al. (2022).