Browsing by Author "Couvillon, Margaret J."
Now showing 1 - 17 of 17
Results Per Page
Sort Options
- Ambient Air Temperature Does Not Predict whether Small or Large Workers Forage in Bumble Bees (Bombus impatiens).Couvillon, Margaret J.; Fitzpatrick, Ginny; Dornhaus, Anna (2010)Bumble bees are important pollinators of crops and other plants. However, many aspects of their basic biology remain relatively unexplored. For example, one important and unusual natural history feature in bumble bees is the massive size variation seen between workers of the same nest. This size polymorphism may be an adaptation for division of labor, colony economics, or be nonadaptive. It was also suggested that perhaps this variation allows for niche specialization in workers foraging at different temperatures: larger bees might be better suited to forage at cooler temperatures and smaller bees might be better suited to forage at warmer temperatures. This we tested here using a large, enclosed growth chamber, where we were able to regulate the ambient temperature. We found no significant effect of ambient or nest temperature on the average size of bees flying to and foraging from a suspended feeder. Instead, bees of all sizes successfully flew and foraged between 16°C and 36°C. Thus, large bees foraged even at very hot temperatures, which we thought might cause overheating. Size variation therefore could not be explained in terms of niche specialization for foragers at different temperatures.
- Apple orchards feed and contaminate bees during, but even more so after bloomSteele, Taylor N. (Virginia Tech, 2021-11-16)Honey bees, Apis mellifera Linn., provide vital economic and ecological services via pollination while concurrently facing multiple interconnected stressors impacting their health. Many crops like apples, peaches, and cherries that add diversity and nutrition to our diet are wholly or partially dependent upon the pollination services of insects. Orchard crops are self-incompatible and commonly regarded as crops reliant on the pollination services of insects, and while previous studies have focused on the impact of bees to orchard crops during bloom, fewer studies have examined the reciprocal relationship of the orchards on honey bees, particularly across the entire foraging season. Here we investigated the foraging dynamics of honey bees in an orchard crop environment in Northern Virginia, United States. We decoded, mapped, and analyzed 3,710 waggle dances, which communicate the location of a valuable resource in the environment, for two full foraging seasons (April-October, 2018-2019), and, concurrent to the dance filming, collected pollen from returning foragers. We found that bees forage locally the majority of the time (< 2 km) throughout the season, with some long-range distances occurring in May after bloom (both 2018 and 2019) and in fall (2019). The shortest communicated median distances (0.50 km and 0.53 km), indicating abundant food availability, occurred during September in both years, paralleling the bloom of an important late season resource, goldenrod (Solidago). We determined, through plotting and analyzing the communicated forage locations and from the collected pollen from returning foragers, that honey bees forage more within apple orchards after the bloom (29.4% and 28.5% foraging) compared to during bloom (18.6% and 21.4% foraging) on the understory of clover and plantain. This post bloom foraging also exposes honey bees to the highest concentration of pesticides across the entire foraging season (2322.89 ppb pesticides versus 181.8 during bloom, 569.84 in late summer, and 246.24 in fall). Therefore, post bloom apple orchards supply an abundance of forage, but also the highest risk of pesticide exposure, which may have important implications for management decisions of bees in orchards.
- Apple orchards feed honey bees during, but even more so after, bloomSteele, Taylor N.; Schürch, Roger; Ohlinger, Bradley D.; Couvillon, Margaret J. (Wiley, 2022-09-01)Many of the fruits that add diversity and nutrition to our diet are wholly or partially dependent upon flower-visiting insects. For example, apples (Malus spp.) are self-incompatible and therefore rely on insect pollinators for fruit development and seed production. Honey bees (Apis mellifera) are often migrated into these orchards when the apples are in bloom. While previous studies have focused on the impact of honey bees to fruit orchards, fewer studies have examined the reciprocal relationship of the orchards to honey bees, particularly if the bees are in the orchard for the entire foraging season, not just during bloom. Here we investigated the foraging dynamics of honey bees in apple orchards in Virginia for two full foraging seasons (April–October, 2018–2019). We decoded, mapped, and analyzed the waggle dances (n = 3710) made by returning foragers, which communicate the distance and direction from the hive to valuable resources, usually nectar or pollen. We found that bees foraged locally at <2 km throughout the season in both 2018 and 2019, with some long-range recruitment of up to 11 km. Contrary to our expectations, apple blooms did not drive honey bee foraging. We determined in our calculations of percent (%) foraging that honey bees recruit more to the apple orchards after the bloom than during the bloom (29.4% vs. 18.6% in 2018 and 28.5% vs. 21.4% in 2019, respectively). Interestingly, honey bees recruited more to forests while the apples bloomed (36.9% and 25.7% in 2018 and 2019, respectively). Lastly, our odds ratio analysis, which includes a distance correction, indicates the honey bees were more than twice as likely to recruit to apple orchards in June, which is after the bloom, than in April or May, which is during the bloom. Our ground truthing revealed that post-bloom apple orchards provided foraging opportunities on the growing understory of red and white clover (Trifolium spp.) and plantain (Plantago spp.). These data might therefore have important implications for best management practice decisions for bees located in fruit orchards.
- Dance-communicated distances support nectar foraging as a supply-driven systemOhlinger, Bradley D.; Schürch, Roger; Silliman, Mary R.; Steele, Taylor N.; Couvillon, Margaret J. (The Royal Society, 2022-08-31)Much like human consumers, honeybees adjust their behaviours based on resources' supply and demand. For both, interactions occur in fluctuating conditions. Honeybees weigh the cost of flight against the benefit of nectar and pollen, which are nutritionally distinct resources that serve different purposes: bees collect nectar continuously to build large honey stores for overwintering, but they collect pollen intermittently to build modest stores for brood production periods. Therefore, nectar foraging can be considered a supply-driven process, whereas pollen foraging is demand-driven. Here we compared the foraging distances, communicated by waggle dances and serving as a proxy for cost, for nectar and pollen in three ecologically distinct landscapes in Virginia. We found that honeybees foraged for nectar at distances 14% further than for pollen across all three sites (n = 6224 dances, p < 0.001). Specific temporal dynamics reveal that monthly nectar foraging occurs at greater distances compared with pollen foraging 85% of the time. Our results strongly suggest that honeybee foraging cost dynamics are consistent with nectar supply-driven and pollen demand-driven processes.
- Do honey bee (Apis mellifera) foragers recruit their nestmates to native forbs in reconstructed prairie habitats?Carr-Markell, Morgan K.; Demler, Cora M.; Couvillon, Margaret J.; Schürch, Roger; Spivak, Marla (PLOS, 2020-02-12)Honey bee (Apis mellifera) colonies are valued for the pollination services that they provide. However, colony mortality has increased to unsustainable levels in some countries, including the United States. Landscape conversion to monocrop agriculture likely plays a role in this increased mortality by decreasing the food sources available to honey bees. Many land owners and organizations in the Upper Midwest region of the United States would like to restore/reconstruct native prairie habitats. With increasing public awareness of high bee mortality, many landowners and beekeepers have wondered whether these restored prairies could significantly improve honey bee colony nutrition. Conveniently, honey bees have a unique communication signal called a waggle dance, which indicates the locations of the flower patches that foragers perceive as highly profitable food sources. We used these communication signals to answer two main questions: First, is there any part of the season in which the foraging force of a honey bee colony will devote a large proportion of its recruitment efforts (waggle dances) to flower patches within prairies? Second, will honey bee foragers advertise specific taxa of native prairie flowers as profitable pollen sources? We decoded 1528 waggle dances in colonies located near two large, reconstructed prairies. We also collected pollen loads from a subset of waggle-dancing bees, which we then analyzed to determine the flower taxon advertised. Most dances advertised flower patches outside of reconstructed prairies, but the proportion of dances advertising nectar sources within prairies increased significantly in the late summer/fall at one site. Honey bees advertised seven native prairie taxa as profitable pollen sources, although the three most commonly advertised pollen taxa were non-native. Our results suggest that including certain native prairie flower taxa in reconstructed prairies may increase the chances that colonies will use those prairies as major food sources during the period of greatest colony growth and honey production.
- Effects of Farm Management Practices on Pest Slugs and Slug Predators in Field CropsBrichler, Kirsten Nicole (Virginia Tech, 2020-05-18)Mid-Atlantic crop producers are increasingly transitioning to soil conservation methods that include reducing or eliminating tillage and planting high residue cover crops. These practices are associated with an increase in moderate to severe damage to field crops by slugs. Conserving, and even enhancing, natural enemy populations is a desirable way to manage slug infestations because remedial control measures are limited. To better understand how cover crop usage and tillage practices affect slug and natural enemy populations, 43 Virginia fields with different combinations of tillage practices and cover crop use were intensively sampled in 2018 and 2019. Fields were sampled over a six-week period during the early planting season when slugs are most problematic. Shingle traps and pitfall traps were used to sample slugs and natural enemies, respectively. To determine how multiple farming practices, soil composition, landscape features, and field history affect slug feeding injury to seedling plants, over 1,000 hectares of commercial production fields in the Shenandoah Region of Virginia were scouted for slug feeding injury to seedling plants. Corresponding crop producers were then surveyed on management methods. Our goal was to determine if slug feeding risk could be predicted by a single factor and or a combination of factors. Behavioral assays were performed with a common slug pest, Deroceras laeve, to determine if this species prefers feeding on maize, soybean, daikon radish, crimson clover, rye, or hairy vetch leaf tissue. Our sampling study found that cover crop use and conservation tillage type did not affect slug presence and damage, but that these factors affected various slug predators in different ways. We also observed that fields with more Phalangiidae and total predators overall had fewer slugs. Average slug feeding injury in both years was low and no factor or interaction of factors in our broader survey affected slug feeding injury ratings in fields. Behavioral assays indicated that slugs fed more on soybean tissue compared with maize, slugs consumed less maize when it was offered with hairy vetch or crimson clover, and slugs consumed less soybean when it was offered with hairy vetch or daikon radish.
- Exploring Aethina tumida Biology and the Impacts of Environmental Factors to Generate Novel Management StrategiesRoth, Morgan Alicia (Virginia Tech, 2022-04-14)The small hive beetle (Aethina tumida) is an invasive pest from sub-Saharan Africa that has posed increasing threats to European honey bee (Apis mellifera) colonies in the United States over the past two decades. While control has been attempted, consistently effective management strategies still not been developed. This study sought to explore novel experimental methods to better understand and use A. tumida biology to target this pest. One aspect of A. tumida biology that has emerged as potential basis for improved control is olfactory manipulation, which could be used to disrupt beetles as they seek out A. mellifera colonies. Through olfactometry and electroantennography, key volatiles in A. tumida attraction and repulsion were tested and sensitivity of A. tumida to several attractants and repellents was quantified on behavioral and physiological levels. An additional source of attractive volatiles is the A. tumida fungal symbiont Kodamaea ohmeri, which ferments larval waste and is present throughout the A. tumida lifecycle, both externally and in the GI tract. This study explored the development of feeding and soil bioassays to test the effects of several insecticides on A. tumida larvae. Feeding and injection bioassays were also used to deliver a fungicide with the goal of repressing K. ohmeri, which was expected to detrimentally impact A. tumida health. The results of this work enhance our current knowledge or A. tumida biology and provide a useful basis for development of safe and selective management A. tumida management options for the future.
- Honey Bee (Apis Mellifera) Foraging Preferences are Negatively Correlated with Alfalfa Leafcutting Bee (Megachile Rotundata) Productivity in Virginian LandscapesCampbell, Chad Dennis (Virginia Tech, 2023-06-21)Honey bees (Apis mellifera) may serve as bioindicators of habitat quality for themselves and also other insect pollinators because we can observe, decode, map, and analyze the information encoded in the waggle dance communication behavior, which allows us to know where and when bees are collecting high quality forage. Previously we measured honey bee foraging dynamics for two years (2018-2019) by waggle dance decoding at three geographically distanced sites in Virginia (Blacksburg, Winchester, Suffolk), consisting of different dominant landcover types. Here we use those data on where and when honey bees were finding profitable resources throughout the season to predict the success of a non-Apis bee in these same landscapes. Alfalfa leafcutting bees (Megachile rotundata) are managed, polylectic, solitary, cavity-nesting bees that are widely naturalized in North America. We selected M. rotundata as a model organism to validate the honey bee foraging data because they share some characteristics with other cavity nesting wild bees, but they are a tractable study system because they are commercially reared and can be purchased for study. At each of the three sites, we installed 15 nest box stations, each stocked with nesting materials and 160 M. rotundata cocoons, at varying distances and directions from the original honey bee hive locations. Most importantly, nest box stations were distributed across a range of honey bee foraging propensities, calculated as the mean foraging probability determined from our honey bee waggle dance decoding data, within a 300m buffer around each nest box. We hypothesized that honey bee foraging probability would positively correlate with M. rotundata cocoon production and survival. For two years (2021-2022) from May-August, we monitored the nest boxes and also collected data on the relative abundance of floral resources at each of the 15 stations per site. At the end of each season, we collected nesting materials and counted both M. rotundata along with incidental (i.e., non-M. rotundata) wild bee cocoons. M. rotundata cocoon productivity varied by location (log-likelihood ratio test: χ2 = 311.0, df = 2, p < 0.001), with Winchester as the most productive location (mean cocoon count (95% CI): 26.2 (23.7 to 28.9)), followed by Blacksburg (20.4 (18.2 to 22.9)), and Suffolk (4.4 (3.5 to 5.5)). The abundance of clover, both red and white, had a significant positive effect on ALCB productivity (log-likelihood ratio test: χ2 = 778.36, < 0.001). On the other hand, the number of ALCB cocoons decreased significantly with the count of Trypoxylon wasp cocoons present in the nest boxes (log-likelihood ratio test: χ2 = 54.37, < 0.001). Most importantly, we found that there was an overall negative relationship between honey bee foraging probability and alfalfa leafcutting bee cocoon productivity ((log-likelihood ratio test: χ2 = 55.42, < 0.001), where areas of higher honey bee foraging probability were associated with lower levels of alfalfa leafcutting bee productivity. This surprising result is in the opposite direction to our original hypothesis that preferred honey bee foraging areas in the landscape, as indicated by decoded waggle dance data, would be positively correlated with alfalfa leafcutting bee productivity. These data demonstrate that while honey bees may indeed act as bioindicators to other insect pollinators, this indication will likely be species and context specific and may even specify the opposite direction.
- Honey Bees (Hymenoptera: Apidae) Decrease Foraging But Not Recruitment After Neonicotinoid ExposureOhlinger, Bradley D.; Schürch, Roger; Durzi, Sharif; Kietzman, Parry M.; Silliman, Mary R.; Couvillon, Margaret J. (Oxford University Press, 2021-10-25)Honey bees (Linnaeus, Hymenoptera: Apidae) are widely used as commercial pollinators and commonly forage in agricultural and urban landscapes containing neonicotinoid-treated plants. Previous research has demonstrated that honey bees display adverse behavioral and cognitive effects after treatment with sublethal doses of neonicotinoids. In laboratory studies, honey bees simultaneously increase their proportional intake of neonicotinoid-treated solutions and decrease their total solution consumption to some concentrations of certain neonicotinoids. These findings suggest that neonicotinoids might elicit a suboptimal response in honey bees, in which they forage preferentially on foods containing pesticides, effectively increasing their exposure, while also decreasing their total food intake; however, behavioral responses in semifield and field conditions are less understood. Here we conducted a feeder experiment with freely flying bees to determine the effects of a sublethal, field-realistic concentration of imidacloprid (IMD) on the foraging and recruitment behaviors of honey bees visiting either a control feeder containing a sucrose solution or a treatment feeder containing the same sucrose solution with IMD. We report that IMD-treated honey bees foraged less frequently (–28%) and persistently (–66%) than control foragers. Recruitment behaviors (dance frequency and dance propensity) also decreased with IMD, but nonsignificantly. Our results suggest that neonicotinoids inhibit honey bee foraging, which could potentially decrease food intake and adversely affect colony health.
- If You Grow It, They Will Come: Ornamental Plants Impact the Abundance and Diversity of Pollinators and Other Flower-Visiting Insects in GardensPalmersheim, Michala C.; Schürch, Roger; O’Rourke, Megan E.; Slezak, Jenna; Couvillon, Margaret J. (MDPI, 2022-11-14)Gardening for pollinators and other flower-visiting insects, where ornamental landscaping plants are added to provide habitats and foraging resources, may provide substantial benefits to declining insect populations. However, plant recommendations often lack empirical grounding or are limited geographically. Here, we created a pollinator garden, replicated across two sites, that contained 25 ornamental landscape plants that were either native or non-native to mid-Atlantic states and perennial or annual. Our objective was to determine the plants that would bring insect abundance and diversity to gardens. We surveyed the number and taxonomy of insects visiting the plants for two summers. We found a significant effect of plant species on both the abundance and diversity of flower-visiting insects. Insects were 42 times more abundant on our most visited plant (black-eyed Susan, Rudbeckia fulgida) versus our least visited plant (petunia, Petunia sp.). There was more than one diversity point difference in the Shannon index between the plant with the most (purple coneflower, Echinacea purpurea) and least (verbena, Verbena bonariensis) diverse visitors. Across our plants, honey bee (Apis mellifera) abundance positively correlated with other insect pollinators, although not specifically with wild bee abundance. Native perennials outperformed non-native perennials and non-native annuals in insect abundance, and both non-native and native perennials attracted more diversity than non-native annuals. Across plants, diversity scores quadratically related to insect abundance, where the highest diversity was seen on the plants with medium abundance. Lastly, we present the weighted sums of all insect visitors per plant, which will allow future gardeners to make informed landscaping decisions. Overall, we have shown that gardening schemes could benefit from a data-driven approach to better support abundant and diverse insect populations within ornamental landscape gardens.
- Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decodingCouvillon, Margaret J.; Pearce, Fiona C. Riddell; Harris-Jones, Elisabeth L.; Kuepfer, Amanda M.; Mackenzie-Smith, Samantha J.; Rozario, Llaura A.; Schürch, Roger; Ratnieks, Francis L. W. (Company of Biologists, 2012-05-15)Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- .100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances.
- Ornamental Plants Impact Insect Pollinator Abundance and Diversity in GardensPalmersheim, Michala Christine (Virginia Tech, 2022-02-02)As pollinator populations decline globally, public interest in creating pollinator gardens to help sustain bee abundance and diversity is rising, and there are many lists of recommended pollinator plantings and suggestions for bee-friendly flowers. However, these suggestions often lack grounding in empirical data. While anecdotal and expert suggestions are not without merit, it is crucial that we have clear, replicable, evidence-based planting recommendations to help boost the abundance and diversity of pollinators that will visit the plants. To fill this gap, we created a pollinator garden containing 25 pollinator plantings, some on previous recommendation lists, some not, and that were either native or non-native and perennial or annual. We surveyed the number and taxonomy of pollinator visitors to these plants through non-destructive methods. These data were analyzed to determine which plants are most effective at attracting abundant and diverse flower-visiting insects. We analyzed preference between native and non-native plants, perennials and annuals, and among different plant species. Our data revealed significant variation in the total abundance and diversity of flower-visiting attracted insects among plant species. Brown-eyed Susans attracted the highest abundance of insect visitors (average number of visitors per day = 53) and were 26-fold more attractive than Begonias, which attracted the lowest abundance of insect visitors (average number of visitors per day = 2). Lavender attracted the highest diversity of insect visitors (Simpson's Reciprocal Diversity Score: 3.5) compared to Pineapple Sage (Simpson's Reciprocal Diversity Score: 1.6), which attracted the lowest diversity of insect visitors. Additionally, we found that native perennials significantly attracted the greatest abundance of visitors compared to either non-native annuals or non-native perennials (p < 0.001). We conclude that ornamental landscape plants can support an abundance and diversity of pollinator visitors, and planting schemes should take into consideration the effects of plant species, plant lifespan, and plant origin. We can use these data to better inform the regional community how to attract and support abundant and diverse pollinator populations within urban and sub-urban ornamental landscape gardens.
- Row crop environments provide an all-you-can-eat buffet and pesticide exposure to foraging honey beesSilliman, Mary Rachel (Virginia Tech, 2021-06-03)The western honey bee, Apis mellifera, provide invaluable economic and ecological services while simultaneously facing stressors that may compromise their health. For example, agricultural landscapes, such as a row crop system, are necessary for our food production, but they may cause poor nutrition in bees from a lack of available nectar and pollen. Row crops are largely wind or self-pollinated, and while previous studies have focused on the impact of bees to row crops, fewer studies have examined the reciprocal relationship of the row crops on honey bees. Here we investigated the foraging dynamics of honey bees in a row crop environment. We decoded, mapped, and analyzed 3460 waggle dances, which communicate the location of where bees collected food, for two full foraging seasons (April – October, 2018-2019), and concurrently collected pollen from returning foragers. We found that bees foraged mostly locally (< 2 km) throughout the season. The shortest communicated median distances (0.48 and 0.32 km), indicating abundant food availability, occurred in July in both years, which was when our row crops were in full bloom. We determined, by plotting and analyzing the communicated locations, that most mid-summer foraging was in row crops, with at least 40% of honey bee recruitment dances indicating either cotton or soybean fields. Bees also largely foraged for nectar when visiting row crop fields, only returning to the hive with Glycine spp. pollen, and foraging on nearby trees and weeds for pollen. Foragers were exposed to thirty-five different pesticides throughout the foraging season, based on pesticide residues in collected pollen. Overall, row crop fields are contributing a surprising majority of mid-summer forage to honey bee hives and suggests that similar agricultural landscapes may also provide abundant, mid-summer forage opportunities for honey bees, however, at the risk of pesticide exposure.
- Row crop fields provide mid-summer forage for honey beesSilliman, Mary R.; Schuerch, Roger; Malone, Sean; Taylor, Sally V.; Couvillon, Margaret J. (Wiley, 2022-07)Honey bees provide invaluable economic and ecological services while simultaneously facing stressors that may compromise their health. For example, agricultural landscapes, such as a row crop system, are necessary for our food production, but they may cause poor nutrition in bees from a lack of available nectar and pollen. Here, we investigated the foraging dynamics of honey bees in a row crop environment. We decoded, mapped, and analyzed 3459 waggle dances, which communicate the location of where bees collected food, for two full foraging seasons (April-October, 2018-2019). We found that bees recruited nestmates mostly locally (<2 km) throughout the season. The shortest communicated median distances (0.474 and 0.310 km), indicating abundant food availability, occurred in July in both years, which was when our row crops were in full bloom. We determined, by plotting and analyzing the communicated locations, that almost half of the mid-summer recruitment was to row crops, with 37% (2018) and 50% (2019) of honey bee dances indicating these fields. Peanut was the most attractive in July, followed by corn and cotton but not soybean. Overall, row crop fields are indicated by a surprisingly large proportion of recruitment dances, suggesting that similar agricultural landscapes may also provide mid-summer foraging opportunities for honey bees.
- Summertime blues: August foraging leaves honey bees empty-handed.Couvillon, Margaret J.; Fensome, Katherine A.; Quah, Shaun K.; Schürch, Roger (2014)A successful honey bee forager tells her nestmates the location of good nectar and pollen with the waggle dance, a symbolic language that communicates a distance and direction. Because bees are adept at scouting out profitable forage and are very sensitive to energetic reward, we can use the distance that bees communicate via waggle dances as a proxy for forage availability, where the further the bees fly, the less forage can be found locally. Previously we demonstrated that bees fly furthest in the summer compared with spring or autumn to bring back forage that is not necessarily of better quality. Here we show that August is also the month when significantly more foragers return with empty crops (P = 7.63e-06). This provides additional support that summer may represent a seasonal foraging challenge for honey bees.
- Too much noise on the dance floor: Intra- and inter-dance angular error in honey bee waggle dances.Schürch, Roger; Couvillon, Margaret J. (2013-01-01)Successful honey bee foragers communicate where they have found a good resource with the waggle dance, a symbolic language that encodes a distance and direction. Both of these components are repeated several times (1 to > 100) within the same dance. Additionally, both these components vary within a dance. Here we discuss some causes and consequences of intra-dance and inter-dance angular variation and advocate revisiting von Frisch and Lindauer's earlier work to gain a better understanding of honey bee foraging ecology.
- Waggle Dance Distances as Integrative Indicators of Seasonal Foraging ChallengesCouvillon, Margaret J.; Schürch, Roger; Ratnieks, Francis L. W. (PLOS, 2014-04-02)Even as demand for their services increases, honey bees (Apis mellifera) and other pollinating insects continue to decline in Europe and North America. Honey bees face many challenges, including an issue generally affecting wildlife: landscape changes have reduced flower-rich areas. One way to help is therefore to supplement with flowers, but when would this be most beneficial? We use the waggle dance, a unique behaviour in which a successful forager communicates to nestmates the location of visited flowers, to make a 2-year survey of food availability. We ‘‘eavesdropped’’ on 5097 dances to track seasonal changes in foraging, as indicated by the distance to which the bees as economic foragers will recruit, over a representative rural-urban landscape. In year 3, we determined nectar sugar concentration. We found that mean foraging distance/area significantly increase from springs (493 m, 0.8 km2) to summers (2156 m, 15.2 km2), even though nectar is not better quality, before decreasing in autumns (1275 m, 5.1 km2). As bees will not forage at long distances unnecessarily, this suggests summer is the most challenging season, with bees utilizing an area 22 and 6 times greater than spring or autumn. Our study demonstrates that dancing bees as indicators can provide information relevant to helping them, and, in particular, can show the months when additional forage would be most valuable.