Browsing by Author "Crawford, Thomas W."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Assessment of Spatio-Temporal Empirical Forecasting Performance of Future Shoreline PositionsIslam, Md Sariful; Crawford, Thomas W. (MDPI, 2022-12-16)Coasts and coastlines in many parts of the world are highly dynamic in nature, where large changes in the shoreline position can occur due to natural and anthropogenic influences. The prediction of future shoreline positions is of great importance in the better planning and management of coastal areas. With an aim to assess the different methods of prediction, this study investigates the performance of future shoreline position predictions by quantifying how prediction performance varies depending on the time depths of input historical shoreline data and the time horizons of predicted shorelines. Multi-temporal Landsat imagery, from 1988 to 2021, was used to quantify the rates of shoreline movement for different time period. Predictions using the simple extrapolation of the end point rate (EPR), linear regression rate (LRR), weighted linear regression rate (WLR), and the Kalman filter method were used to predict future shoreline positions. Root mean square error (RMSE) was used to assess prediction accuracies. For time depth, our results revealed that the higher the number of shorelines used in calculating and predicting shoreline change rates the better predictive performance was yielded. For the time horizon, prediction accuracies were substantially higher for the immediate future years (138 m/year) compared to the more distant future (152 m/year). Our results also demonstrated that the forecast performance varied temporally and spatially by time period and region. Though the study area is located in coastal Bangladesh, this study has the potential for forecasting applications to other deltas and vulnerable shorelines globally.
- Coastal Erosion and Human Perceptions of Revetment Protection in the Lower Meghna Estuary of BangladeshCrawford, Thomas W.; Islam, Md Sariful; Rahman, Munshi Khaledur; Paul, Bimal Kanti; Curtis, Scott; Miah, Md. Giashuddin; Islam, Mohammad Rafiqul (MDPI, 2020-09-22)This study investigates coastal erosion, revetment as a shoreline protection strategy, and human perceptions of revetments in the Lower Meghna estuary of the Bangladesh where new revetments were recently constructed. Questions addressed were: (1) How do rates of shoreline change vary over the period 2011–2019? (2) Did new revetments effectively halt erosion and what were the magnitudes of erosion change? (3) How have erosion rates changed for shorelines within 1 km of revetments, and (4) How do households perceive revetments? High-resolution Planet Lab imagery was used to quantify shoreline change rates. Analysis of household survey data assessed human perceptions of the revetment’s desirability and efficacy. Results revealed high rates of erosion for 2011–2019 with declining erosion after 2013. New revetments effectively halted erosion for protected shorelines. Significant spatial trends for erosion rates existed for shorelines adjacent to revetments. Survey respondents overwhelmingly had positive attitudes about a desire for revetment protection; however, upstream respondents expressed a strong majority perception that revetment acts to make erosion worse. Highlights of the research include integration of remote sensing with social science methods, the timing of the social survey shortly after revetment construction, and results showing significant erosion change upstream and downstream of new revetments.
- Evaluation of predicted loss of different land use and land cover (LULC) due to coastal erosion in BangladeshIslam, Md Sariful; Crawford, Thomas W.; Shao, Yang (Frontiers, 2023-04)Coastal erosion is one of the most significant environmental threats to coastal communities globally. In Bangladesh, coastal erosion is a regularly occurring and major destructive process, impacting both human and ecological systems at sea level. The Lower Meghna estuary, located in southern Bangladesh, is among the most vulnerable landscapes in the world to the impacts of coastal erosion. Erosion causes population displacement, loss of productive land area, loss of infrastructure and communication systems, and, most importantly, household livelihoods. With an aim to assess the impacts of historical and predicted shoreline change on different land use and land cover, this study estimated historical shoreline movement, predicted shoreline positions based on historical data, and quantified and assessed past land use and land cover change. Multi-temporal Landsat images from 1988-2021 were used to quantify historical shoreline movement and past land use and land cover. A time-series classification of historical land use and land cover (LULC) were produced to both quantify LULC change and to evaluate the utility of the future shoreline predictions for calculating amounts of lost or newly added land resources by LULC type. Our results suggest that the agricultural land is the most dominant land cover/use (76.04% of the total land loss) lost over the studied period. Our results concluded that the best performed model for predicting land loss was the 10-year time depth and 20-year time horizon model. The 10-year time depth and 20-year time horizon model was also most accurate for agricultural, forested, and inland waterbody land use/covers loss prediction. We strongly believe that our results will build a foundation for future research studying the dynamics of coastal and deltaic environments.
- Household Migration and Intentions for Future Migration in the Climate Change Vulnerable Lower Meghna Estuary of Coastal BangladeshPaul, Bimal Kanti; Rahman, Munshi Khaledur; Lu, Max; Crawford, Thomas W. (MDPI, 2022-04-14)Coastal residents of Bangladesh are now confronted with the increased incidence, variability, and severity of weather-related hazards and disasters due to climate change-induced sea level rise (SLR). Many researchers hold the view that as a consequence residents of such area have either already migrated to inland locations or intend to so in the near future. We examine the migration of households following a flash flood event that took place in August 2020 and address intentions for future migration in the Lower Meghna Estuary of coastal Bangladesh. The data obtained for this study include 310 household surveys, field observations, and informal discussions with respondents and local people. Based on the analysis of the field data, this empirical research found one household migrated to other district within one year after the event. When the respondents were asked about their future migration intensions, only a tiny proportion, namely 21 (6.77%) households, likely will leave the study area to settle in other districts while the remaining 289 households likely will stay in the Lakshmipur district. This finding challenges the existing narratives about vulnerability to environmentally induced migration. Moreover, it provides evidence of non-migration, which is a new as well as thriving area of investigation in relation to coastal Bangladesh.
- A Hydroclimatological Analysis of Precipitation in the Ganges–Brahmaputra–Meghna River BasinCurtis, Scott; Crawford, Thomas W.; Rahman, Munshi Khaledur; Paul, Bimal Kanti; Miah, Md. Giashuddin; Islam, Md Sariful; Patel, Mohin (MDPI, 2018-09-29)Understanding seasonal precipitation input into river basins is important for linking large-scale climate drivers with societal water resources and the occurrence of hydrologic hazards such as floods and riverbank erosion. Using satellite data at 0.25-degree resolution, spatial patterns of monsoon (June-July-August-September) precipitation variability between 1983 and 2015 within the Ganges–Brahmaputra–Meghna (GBM) river basin are analyzed with Principal Component (PC) analysis and the first three modes (PC1, PC2 and PC3) are related to global atmospheric-oceanic fields. PC1 explains 88.7% of the variance in monsoonal precipitation and resembles climatology with the center of action over Bangladesh. The eigenvector coefficients show a downward trend consistent with studies reporting a recent decline in monsoon rainfall, but little interannual variability. PC2 explains 2.9% of the variance and shows rainfall maxima to the far western and eastern portions of the basin. PC2 has an apparent decadal cycle and surface and upper-air atmospheric height fields suggest the pattern could be forced by tropical South Atlantic heating and a Rossby wave train stemming from the North Atlantic, consistent with previous studies. Finally, PC3 explains 1.5% of the variance and has high spatial variability. The distribution of precipitation is somewhat zonal, with highest values at the southern border and at the Himalayan ridge. There is strong interannual variability associated with PC3, related to the El Nino/Southern Oscillation (ENSO). Next, we perform a hydroclimatological downscaling, as precipitation attributed to the three PCs was averaged over the Pfafstetter level-04 sub-basins obtained from the World Wildlife Fund (Gland, Switzerland). While PC1 was the principal contributor of rainfall for all sub-basins, PC2 contributed the most to rainfall in the western Ganges sub-basin (4524) and PC3 contributed the most to the rainfall in the northern Brahmaputra (4529). Monsoon rainfall within these two sub-basins were the only ones to show a significant relationship (negative) with ENSO, whereas four of the eight sub-basins had a significant relationship (positive) with sea surface temperature (SST) anomalies in the tropical South Atlantic. This work demonstrates a geographic dependence on climate teleconnections in the GBM that deserves further study.
- Implications for spatial non-stationarity and the neighborhood effect averaging problem (NEAP) in green inequality research: evidence from three states in the USAGyanwali, Sophiya; Karki, Shashank; Jang, Kee Moon; Crawford, Thomas W.; Zhang, Mengxi; Kim, Junghwan (Springer, 2024-09-04)Recent studies on green space exposure have argued that overlooking human mobility could lead to erroneous exposure estimates and their associated inequality. However, these studies are limited as they focused on single cities and did not investigate multiple cities, which could exhibit variations in people’s mobility patterns and the spatial distribution of green spaces. Moreover, previous studies focused mainly on large-sized cities while overlooking other areas, such as small-sized cities and rural neighborhoods. In other words, it remains unclear the potential spatial non-stationarity issues in estimating green space exposure inequality. To fill these significant research gaps, we utilized commute data of 31,862 people from Virginia, West Virginia, and Kentucky. The deep learning technique was used to extract green spaces from street-view images to estimate people’s home-based and mobility-based green exposure levels. The results showed that the overall inequality in exposure levels reduced when people’s mobility was considered compared to the inequality based on home-based exposure levels, implying the neighborhood effect averaging problem (NEAP). Correlation coefficients between individual exposure levels and their social vulnerability indices demonstrated mixed and complex patterns regarding neighborhood type and size, demonstrating the presence of spatial non-stationarity. Our results underscore the crucial role of mobility in exposure assessments and the spatial non-stationarity issue when evaluating exposure inequalities. The results imply that local-specific studies are urgently needed to develop local policies to alleviate inequality in exposure precisely.
- Resident perceptions of riverbank erosion and shoreline protection: a mixed-methods case study from BangladeshRahman, Mizanur; Popke, Jeff; Crawford, Thomas W. (Springer, 2022-07-28)Riverbank erosion is a common hazard in Bangladesh, posing a significant threat to homes, properties, and livelihoods. In recent years, the government of Bangladesh has intensified efforts to mitigate riverbank erosion by hardening shorelines, including the building of concrete revetments, but the local dynamics of these interventions are not well documented. To address this, we present results from a study of community-level response to a 2-mile long concrete revetment recently constructed in the administrative district of Ramgati, in the lower Meghna River basin of Bangladesh. Our study combines quantitative analysis of data from a household survey with qualitative data from semi-structured interviews to assess resident perceptions of the new revetment and its effect on the landscape of riverbank erosion hazard. The study finds, firstly, that hazard awareness is widespread but may be influenced by livelihood factors related to the dynamics of displacement and resettlement. Second, we find that that the negative impacts of riverbank erosion vary spatially. Hazard perception in Ramgati is significantly influenced by the physical location of the household, with those residing closer to the river and in unprotected zones north and south of the revetment expressing much greater worry that they will lose their homes, and believing that this will happen much sooner than residents further away or in the zone now protected by the embankment. As an empirically grounded case study, our findings add to the literature on riverbank erosion in Bangladesh and perception studies focused on water-based hazards in similar settings globally.
- Shoreline Change Analysis along Rivers and Deltas: A Systematic Review and Bibliometric Analysis of the Shoreline Study Literature from 2000 to 2021Rahman, Munshi Khaledur; Crawford, Thomas W.; Islam, Md. Sariful (MDPI, 2022-11-08)Globally, coastal zones, rivers and riverine areas, and deltas carry enormous values for ecosystems, socio-economic, and environmental perspectives. These often highly populated areas are generally significantly different from interior hinterlands in terms of population density, economic activities, and geophysical and ecological processes. Geospatial technologies are widely used by scholars from multiple disciplines to understand the dynamic nature of shoreline changes globally. In this paper, we conduct a systematic literature review to identify and interpret research patterns and themes related to shoreline change detection from 2000 to 2021. Two databases, Web of Science and Scopus, were used to identify articles that investigate shoreline change analysis using geospatial technique such as remote sensing and GIS analysis capabilities (e.g., the Digital Shoreline Analysis System (DSAS). Between the years 2000 and 2021, we initially found 1622 articles, which were inspected for suitability, leading to a final set of 905 articles for bibliometric analysis. For systematic analysis, we used Rayyan—a web-based platform used for screening literature. For bibliometric network analysis, we used the CiteSpace, Rayyan, and VOSviewer software. The findings of this study indicate that the majority of the literature originated in the USA, followed by India. Given the importance of protecting the communities living in the riverine areas, coastal zones, and delta regions, it is necessary to ask new research questions and apply cutting-edge tools and technology, such as machine learning approach and GeoAI, to fill the research gaps on shoreline change analysis. Such approaches could include, but are not limited to, centimeter level accuracy with high-resolution satellite imagery, the use of unmanned aerial vehicles (UAV), and point cloud data for both local and global level shoreline change and analysis.
- A Spatial Analysis of the Relationship between Vegetation and PovertyDawson, Teddy; Sandoval, J.S. Onésimo; Sagan, Vasit; Crawford, Thomas W. (MDPI, 2018-03-01)The goal of this paper was to investigate poverty and inequities that are associated with vegetation. First, we performed a pixel-level linear regression on time-series and Normalized Difference Vegetation Index (NDVI) for 72 United States (U.S.) cities with a population ≥250,000 for 16 years (1990, 1991, 1995, 1996, 1997, 1998, and 2001 to 2010) using Advanced Very High Resolution Radiometer 1-kilometer (1-km). Second, from the pixel-level regression, we selected five U.S. cities (Shrinking: Chicago, Detroit, Philadelphia, and Growing: Dallas and Tucson) that were one standard deviation above the overall r-squared mean and one standard deviation below the overall r-squared mean to show cities that were different from the typical cities. Finally, we used spatial statistics to investigate the relationship between census tract level data (i.e., poverty, population, and race) and vegetation for 2010, based on the 1-km grid cells using Ordinary Least Squares Regression and Geographically Weighted Regression. Our results revealed poverty related areas were significantly correlated with positive high and/or negative high vegetation in both shrinking and growing cities. This paper makes a contribution to the academic body of knowledge on U.S. urban shrinking and growing cities by using a comparative analysis with global and local spatial statistics to understand the relationship between vegetation and socioeconomic inequality.
- Urban Form as a Technological Driver of Carbon Dioxide Emission: A Structural Human Ecology Analysis of Onroad and Residential Sectors in the Conterminous U.S.Crawford, Thomas W. (MDPI, 2020-09-21)This study investigates the role of urban form as a technological driver of U.S. CO2 emissions for the onroad and residential sectors. The STIRPAT (Stochastic Impacts by Region on Population, Affluence, and Technology) human structural ecology framework is extended by drawing from science and technology studies (STS) to theorize urban form as a sociotechnical system involving practices and knowledge that contribute to urban land use as a material artifact on the landscape influencing emissions. Questions addressed are: (1) “What is the influence of urban form on total sector CO2 emissions?” and (2) “How does the influence of urban form on CO2 emissions differ for metropolitan versus non-metropolitan status?” Spatial error regression models were estimated using county-level CO2 emissions data from Project Vulcan. The National Land Cover Dataset (NLCD) was used to quantify measures of urban form. Other independent variables were derived from U.S. Census data. Results demonstrate carbon reduction benefits achievable through a developed land use mix containing a greater proportion of high intensity relative to low intensity use. Urban form matters, but it matters differently in terms of sign, significance, and interpretation depending on emission sector and metro versus non-metro status. A focus on urban form provides policymakers potential leverage for carbon mitigation efforts that focus on total emissions as opposed to per capita emission. A feature of the research is its integration of concepts and theory from structural human ecology, STS, land change science, and GIScience.