Browsing by Author "Dong, Wenzheng"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Doubly Geometric Quantum ControlDong, Wenzheng; Zhuang, Fei; Economou, Sophia E.; Barnes, Edwin Fleming (American Physical Society, 2021-08-24)In holonomic quantum computation, quantum gates are performed using driving protocols that trace out closed loops on the Bloch sphere, making them robust to certain pulse errors. However, dephasing noise that is transverse to the drive, which is significant in many qubit platforms, lies outside the family of correctable errors. Here, we present a general procedure that combines two types of geometry—holonomy loops on the Bloch sphere and geometric space curves in three dimensions—to design gates that simultaneously suppress pulse errors and transverse noise errors. We demonstrate this doubly geometric control technique by designing explicit examples of single-qubit and two-qubit dynamically corrected holonomic gates.
- Precise high-fidelity electron-nuclear spin entangling gates in NV centers via hybrid dynamical decoupling sequencesDong, Wenzheng; Calderon-Vargas, F. A.; Economou, Sophia E. (2020-07)Color centers in solids, such as the nitrogen-vacancy center in diamond, offer well-protected and well-controlled localized electron spins that can be employed in various quantum technologies. Moreover, the long coherence time of the surrounding spinful nuclei can enable a robust quantum register controlled through the color center. We design pulse sequence protocols that drive the electron spin to generate robust entangling gates with these nuclear memory qubits. We find that compared to using Carr-Purcell-Meiboom-Gill (CPMG) alone, Uhrig decoupling sequence and hybrid protocols composed of CPMG and Uhrig sequences improve these entangling gates in terms of fidelity, spin control range, and spin selectivity. We provide analytical expressions for the sequence protocols and also show numerically the efficacy of our method on nitrogen-vacancy centers in diamond. Our results are broadly applicable to color centers weakly coupled to a small number of nuclear spin qubits.
- Quantum Information Processing with Color Center Qubits: Theory of Initialization and Robust ControlDong, Wenzheng (Virginia Tech, 2021-05-21)Quantum information technologies include secure quantum communications and ultra precise quantum sensing that are significantly more efficient than their classical counterparts. To enable such technologies, we need a scalable quantum platform in which qubits are con trollable. Color centers provide controllable optically-active spin qubits within the coherence time limit. Moreover, the nearby nuclear spins have long coherence times suitable for quantum memories. In this thesis, I present a theoretical understanding of and control protocols for various color centers. Using group theory, I explore the wave functions and laser pumping-induced dynamics of VSi color centers in silicon carbide. I also provide dynamical decoupling-based high-fidelity control of nuclear spins around the color center. I also present a control technique that combines holonomic control and dynamically corrected control to tolerate simultaneous errors from various sources. The work described here includes a theoretical understanding and control techniques of color center spin qubits and nuclear spin quantum memories, as well as a new platform-independent control formalism towards robust qubit control.