Browsing by Author "Gallagher, Timothy M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Characterization and Evaluation of Non-Line-of-Sight Paths for Fixed Broadband Wireless CommunicationsGallagher, Timothy M. (Virginia Tech, 2004-05-13)Channel impulse responses collected on the Virginia Tech campus show combinations of specular multipath and diffuse scattering at LMDS frequencies. An algorithm is presented that estimates link performance based on the channel impulse response. Presented and analyzed are representative impulse responses (one is primarily specular in nature and one shows significant diffuse scattering) to show that the proposed algorithm is appropriate for analyzing channels exhibiting either of these characteristics. Monte Carlo simulations logged the sequence number of each bit error to gain an understanding of the distribution of errors over time. The results show that for these static channels the errors occur randomly rather than in bursts, leading to the conclusion that average bit-error rate statistics are appropriate for channel characterization. Zero-Forcing (Z-F) and Minimum Mean Square Error (MMSE) equalizers employed on these channels had a significant impact on the link quality. In many cases, the performance of the MMSE equalizer performed only slightly better than the Z-F equalizer. However, when deep nulls were present in the channel response, the MMSE equalizer performed significantly better. Algorithms for determining the number of taps necessary to approach an optimum equalization are presented for both types of equalizers and a '98%' rule of thumb is presented. The algorithm's role in adaptive and cognitive radio systems is discussed and two applications are presented to illustrate its utility.
- Cognitive radio engine based on genetic algorithms in a network(United States Patent and Trademark Office, 2007-10-30)A genetic algorithm (GA) approach is used to adapt a wireless radio to a changing environment. A cognitive radio engine implements three algorithms; a wireless channel genetic algorithm (WCGA), a cognitive system monitor (CSM) and a wireless system genetic algorithm (WSGA). A chaotic search with controllable boundaries allows the cognitive radio engine to seek out and discover unique solutions efficiently. By being able to control the search space by limiting the number of generations, crossover rates, mutation rates, fitness evaluations, etc., the cognitive system can ensure legal and regulatory compliance as well as efficient searches. The versatility of the cognitive process can be applied to any adaptive radio. The cognitive system defines the radio chromosome, where each gene represents a radio parameter such as transmit power, frequency, modulation, etc. The adaptation process of the WSGA is performed on the chromosomes to develop new values for each gene, which is then used to adapt the radio settings.