Browsing by Author "Gao, David Y."
Now showing 1 - 16 of 16
Results Per Page
Sort Options
- Analytical Solutions for the Deformation of Anisotropic Elastic and Piezothermoelastic Laminated PlatesVel, Senthil S. (Virginia Tech, 1998-11-30)The Eshelby-Stroh formalism is used to analyze the generalized plane strain quasistatic deformations of an anisotropic, linear elastic laminated plate.The formulation admits any set of boundary conditions on the edges and long faces of the laminate. Each lamina may be generally anisotropic with as many as 21 independent elastic constants. The three dimensional governing differential equations are satisfied at every point of the body.The boundary conditions and interface continuity conditions are satisfied in the sense of a Fourier series. Results are presented for three sample problems to illustrate the versatility of the method. The solution methodology is generalized to study the deformation of finite rectangular plates subjected to arbitrary boundary conditions. The effect of truncation of the series on the accuracy of the solution is carefully examined. Results are presented for thick plates with two opposite edges simply supported and the other two subjected to eight different boundary conditions. The results are compared with three different plate theories.The solution exhibits boundary layers at the edges except when they are simply supported. Results are presented in tabular form for different sets of edge boundary conditions to facilitate comparisons with predictions from various plate theories and finite element formulations. The Eshelby-Stroh formalism is also extended to study the generalized plane deformations of piezothermoelastic laminated plates. The method is capable of analyzing laminated plates with embedded piezothermoelastic patches. Results are presented for a thermoelastic problem and laminated elastic plates with piezothermoelastic lamina attached to its top surface. When a PZT actuator patch is attached to an elastic cantilever substrate, it is observed that the transverse shear stress and transverse normal stress are very large at the corners of the PZT-substrate interface. This dissertation is organized in the form of three self-contained chapters each of which will be submitted for possible publication in a journal.
- Computer Modeling and Simulation of Morphotropic Phase Boundary FerroelectricsRao, Weifeng (Virginia Tech, 2009-07-31)Phase field modeling and simulation is employed to study the underlying mechanism of enhancing electromechanical properties in single crystals and polycrystals of perovskite-type ferroelectrics around the morphotropic phase boundary (MPB). The findings include: (I) Coherent phase decomposition near MPB in PZT is investigated. It reveals characteristic multidomain microstructures, where nanoscale lamellar domains of tetragonal and rhombohedral phases coexist with well-defined crystallographic orientation relationships and produce coherent diffraction effects. (II) A bridging domain mechanism for explaining the phase coexistence observed around MPBs is presented. It shows that minor domains of metastable phase spontaneously coexist with and bridge major domains of stable phase to reduce total system free energy, which explains the enhanced piezoelectric response around MPBs. (III) We demonstrate a grain size- and composition-dependent behavior of phase coexistence around the MPBs in polycrystals of ferroelectric solid solutions. It shows that grain boundaries impose internal mechanical and electric boundary conditions, which give rise to the grain size effect of phase coexistence, that is, the width of phase coexistence composition range increases with decreasing grain sizes. (IV) The domain size effect is explained by the domain wall broadening mechanism. It shows that, under electric field applied along the nonpolar axis, without domain wall motion, the domain wall broadens and serves as embryo of field-induced new phase, producing large reversible strain free from hysteresis. (V) The control mechanisms of domain configurations and sizes in crystallographically engineered ferroelectric single crystals are investigated. It reveals that highest domain wall densities are obtained with intermediate magnitude of electric field applied along non-polar axis of ferroelectric crystals. (VI) The domain-dependent internal electric field associated with the short-range ordering of charged point defects is demonstrated to stabilize engineered domain microstructure. The internal electric field strength is estimated, which is in agreement with the magnitude evaluated from available experimental data. (VII) The poling-induced piezoelectric anisotropy in untextured ferroelectric ceramics is investigated. It is found that the maximum piezoelectric response in the poled ceramics is obtained along a macroscopic nonpolar direction; and extrinsic contributions from preferred domain wall motions play a dominant role in piezoelectric anisotropy and enhancement in macroscopic nonpolar direction. (VIII) Stress effects on domain microstructure are investigated for the MPB-based ferroelectric polycrystals. It shows that stress alone cannot pole the sample, but can be utilized to reduce the strength of poling electric field. (IX) The effects of compressions on hysteresis loops and domain microstructures of MPB-based ferroelectric polycrystals are investigated. It shows that longitudinal piezoelectric coefficient can be enhanced by compressions, with the best value found when compression is about to initiate the depolarization process.
- Crack Path Selection in Adhesively Bonded JointsChen, Buo (Virginia Tech, 1999-11-15)This dissertation is to obtain an overall understanding of the crack path selection in adhesively bonded joints. Using Dow Chemical epoxy resin DER 331® with various levels of rubber concentration as an adhesive, and aluminum 6061-T6 alloy with different surface pretreatments as the adherends, both symmetric and asymmetric double cantilever beam (DCB) specimens are prepared and tested under mixed mode fracture conditions in this study. Post-failure analyses conducted on the failure surfaces indicate that the failure tends to be more interfacial as the mode II component in the fracture increases whereas more advanced surface preparation techniques can prevent failure at the interface. Through mechanically stretching the DCB specimens uniaxially until the adherends are plastically deformed, various levels of T-stress are achieved in the specimens. Test results of the specimens with various T-stresses demonstrate that the directional stability of cracks in adhesive bonds depends on the T-stress level. Cracks tend to be directionally stable when the T-stress is compressive whereas directionally unstable when the T-stress is tensile. However, the direction of crack propagation is mostly stabilized when more than 3% mode II fracture component is present in the loading regardless of the T-stress levels in the specimens. Since the fracture sequences in adhesive bonds are closely related to the energy balance in the system, an energy balance model is developed to predict the directional stability of cracks and the results are consistent with the experimental observations. Using the finite element method, the T-stress is shown to be closely related to the specimen geometry, indicating a specimen geometry dependence of the directional stability of cracks. This prediction is verified through testing DCB specimens with various adherend and adhesives thicknesses. By testing the specimens under both quasi-static and low-speed impact conditions, and using a high-speed camera to monitor the fracture sequence, the influences of the debond rate on the locus of failure and the directional stability of cracks are investigated. Post-failure analyses suggest that the failure tends to be more interfacial when the debond rate is low and tends to be more cohesive when the debond rate is high. However, this rate dependence of the locus of failure is greatly reduced when more advanced surface preparation techniques are used in preparing the specimens. The post-failure analyses also reveal that cracks tend to be more directionally unstable as the debond rate increases. Finally, employing interface mechanics and extending the criteria for the direction of crack propagation to adhesively bonded joints, the crack trajectories for directionally unstable cracks are predicted and the results are consistent with the overall features of the crack paths observed experimentally.
- Deformable Registration of Supine and Prone Colons for CT ColonographySuh, Jung Wook (Virginia Tech, 2007-10-25)State-of-the-art three-dimensional endo-luminal virtual colonoscopy (VC) or CT colonography (CTC) is a minimally invasive medical procedure that examines the entire colon in order to detect polyps and colorectal cancer. Most colon cancers malignantly transform from polyps, which are extra growths on the surface of the mucous membrane. Three dimensional endoscopic colon lumen interior images offered by CTC allow physicians to examine the colon interactively. Thus, CTC has several advantages over conventional optical colonoscopy including reduced risk. One of the challenging problems that prevent practical use in clinical situations is the complexity of the human colon. The colon's deformation by peristalsis and the diverse shapes of polyps make it difficult to distinguish polyps from other non-threatening entities in the colon. Hence, most CTC protocols acquire both prone and supine images to improve the visualization of the lumen wall, reduce false positives, and improve sensitivity. Comparisons between the prone and supine images can be facilitated by computerized registration between the scans. In this dissertation, two algorithms for registering colons segmented from prone and supine images are presented. First is an algorithm for three dimensional registration of the prone and supine colon when both are well distended and there is a single connected lumen. Second is another registration algorithm between colons with topological differences caused by inadequate bowel preparation or peristalsis. Such topological changes make deformable registrations of the colons difficult, and at present there are no registration algorithms which can accommodate them. The first algorithm uses feature matching of the colon centerline and a modified version of the demons deformable registration algorithm to define a deformation field between the prone and supine lumen surface. The second method utilizes embedded map representation of colon volume. The two proposed colon registration methods will contribute to improving the accuracy of the computerized registration process and increasing the versatility of the clinical use of CT colonoscopy.
- Design and Analysis of Piezoelectric Transformer ConvertersLin, Chih-yi (Virginia Tech, 1997-05-20)Piezoelectric ceramics are characterized as smart materials and have been widely used in the area of actuators and sensors. The principle operation of a piezoelectric transformer (PT) is a combined function of actuators and sensors so that energy can be transformed from electrical form to electrical form via mechanical vibration. Since PTs behave as band-pass filters, it is particularly important to control their gains as transformers and to operate them efficiently as power-transferring components. In order to incorporate a PT into amplifier design and to match it to the linear or nonlinear loads, suitable electrical equivalent circuits are required for the frequency range of interest. The study of the accuracy of PT models is carried out and verified from several points of view, including input impedance, voltage gain, and efficiency. From the characteristics of the PTs, it follows that the efficiency of the PTs is a strong function of load and frequency. Because of the big intrinsic capacitors, adding inductive loads to the PTs is essential to obtain a satisfactory efficiency for the PTs and amplifiers. Power-flow method is studied and modified to obtain the maximum efficiency of the converter. The algorithm for designing a PT converter or inverter is to calculate the optimal load termination, YOPT, of the PT first so that the efficiency (power gain) of the PT is maximized. And then the efficiency of the dc/ac inverter is optimized according to the input impedance, ZIN, of the PT with an optimal load termination. Because the PTs are low-power devices, the general requirements for the applications of the PTs include low-power, low cost, and high efficiency. It is important to reduce the number of inductive components and switches in amplifier or dc/ac inverter designs for PT applications. High-voltage piezoelectric transformers have been adopted by power electronic engineers and researchers worldwide. A complete inverter with HVPT for CCFL or neon lamps was built, and the experimental results are presented. However, design issues such as packaging, thermal effects, amplifier circuits, control methods, and matching between amplifiers and loads need to be explored further.
- Exploring Abstraction Techniques for Scalable Bit-Precise Verification of Embedded SoftwareHe, Nannan (Virginia Tech, 2009-05-01)Conventional testing has become inadequate to satisfy rigorous reliability requirements of embedded software that is playing an increasingly important role in many safety critical applications. Automatic formal verification is a viable avenue for ensuring the reliability of such software. Recently, more and more formal verification techniques have begun modeling a non-Boolean data variable as a bit-vector with bounded width (i.e. a vector of multiple bits like 32- or 64- bits) to implement bit-precise verification. One major challenge in the scalable application of such bit-precise verification on real-world embedded software is that the state space for verification can be intractably large. In this dissertation, several abstraction techniques are explored to deal with this scalability challenge in the bit-precise verification of embedded software. First, we propose a tight integration of program slicing, which is an important static program analysis technique, with bounded model checking (BMC). While many software verification tools apply program slicing as a separate preprocessing step, we integrate slicing operations into our model construction and reduction process and enhance them with compilation optimization techniques to compute accurate program slices. We also apply a proof-based abstraction-refinement framework to further remove those program segments irrelevant to the property being verified. Next, we present a method of using symbolic simulation for scalable formal verification. The simulation involves distinguishing X as symbolic values to abstract concrete variables' values. Also, the method embeds this symbolic simulation in a counterexample-guided abstraction-refinement framework to automatically construct and verify an abstract model, which has a smaller state space than that of the original concrete program. This dissertation also presents our efforts on using two common testability metrics — controllability metric (CM) and observability metric (OM) — as the high-level structural guidance for scalable bit-precise verification. A new abstraction approach is proposed based on the concept of under- and over-approximation to efficiently solve bit-vector formulas generated from embedded software verification instances. These instances include both complicated arithmetic computations and intensive control structures. Our approach applies CM and OM to assist the abstraction refinement procedure in two ways: (1) it uses CM and OM to guide the construction of a simple under-approximate model, which includes only a subset of execution paths in a verification instance, so that a counterexample that refutes the instance can be obtained with reduced effort, and (2) in order to reduce the cost of using proof-based refinement alone, it uses OM heuristics to guide the restoration of additional verification-relevant formula constraints with low computational cost for refinement. Experiments show a significant reduction of the solving time compared to state-of-the-art solvers for the bit-vector arithmetic. This dissertation finally proposes an efficient algorithm to discover non-uniform encoding widths of individual variables in the verification model, which may be smaller than their original modeling width but sufficient for the verification. Our algorithm distinguishes itself from existing approaches in that it is path-oriented; it takes advantage of CM and OM values to guide the computation of the initial, non-uniform encoding widths, and the effective adjustment of these widths along different paths, until the property is verified. It can restrict the search from those paths that are deemed less favorable or have been searched in previous steps, thus simplifying the problem. Experiments demonstrate that our algorithm can significantly speed up the verification especially in searching for a counterexample that violates the property under verification.
- Finite Element Analysis of the Deformation of a Rubber DiaphragmIonita, Axinte (Virginia Tech, 2001-02-05)Several rubber diaphragms, of the same type used inside an hydraulic accumulator, failed a short time after they were mounted. While there is nothing special with these failures the cost, in some cases can be high. A closer look, at the damaged diaphragms reveal an interesting nonsymmetric radial deformation accompanied in some cases by cracks. Most of the analyses regarding the failures of rubber diaphragms offer explanations only from a chemical or material science point of view. We propose in this thesis a new perspective from a mechanical-structural engineering view. Therefore the main goal of the thesis is to investigate the deformation of a diaphragm and based on this analysis to propose an explanation for formation of the cracks. It is shown that the analysis of the diaphragm problem leads to a pseudo-nonconservative system and involves a buckling, a post buckling (dynamic snap-through), an eversion, and a load response analysis. The problem is approached numerically using the nite element method. The character of pseudo-nonconservativeness of the system requires, in this case, an update of the tangent stiffness matrix with a certain stiffness correction. This new correction is proposed also. The result is valid not only for this particular problem but for the entire class of problems to which the diaphragm belongs. This correction is implemented in an existing nite element program (NIKE3D) and used to analyze the diaphragm deformation. The results indicate that under the typical load condition for a diaphragm a certain deformation pattern occurs, and this can lead to the formation of cracks. This deformation matches extremely well with the actual deformed shape of a typical failed diaphragm. It is shown that the deformation pattern depends on the structural properties of the diaphragm rather than on the magnitude of the applied load. The nonsymmetry in the diaphragm deformation and the difference in the crack development is explained also.
- Global extremal conditions for multi-integer quadratic programmingWang, Zhenbo; Fang, Sue- Cherng; Gao, David Y.; Xing, Wenxun (American Institute of Mathematical Sciences, 2008-05)Support vector machine (SVM) is a very popular method for binary data classification in data mining ( machine learning). Since the objective function of the unconstrained SVM model is a non-smooth function, a lot of good optimal algorithms can't be used to find the solution. In order to overcome this model's non-smooth property, Lee and Mangasarian proposed smooth support vector machine (SSVM) in 2001. Later, Yuan et al. proposed the polynomial smooth support vector machine (PSSVM) in 2005. In this paper, a three-order spline function is used to smooth the objective function and a three-order spline smooth support vector machine model (TSSVM) is obtained. By analyzing the performance of the smooth function, the smooth precision has been improved obviously. Moreover, BFGS and Newton-Armijo algorithms are used to solve the TSSVM model. Our experimental results prove that the TSSVM model has better classification performance than other competitive baselines.
- An Investigation of the Tensile Strength and Stiffness of Unidirectional Polymer-Matrix, Carbon-Fiber Composites under the Influence of Elevated TemperaturesWalther, Brady M. (Virginia Tech, 1998-05-27)Traditionally it was thought that the unidirectional strength in the fiber direction of fiber dominated composites was not influenced by the matrix material. As long as the fiber was not affected then the strength would remain. However this thesis will challange that belief. The unidirectional strength in the fiber direction of fiber dominated composites is influenced by the matrix material. The object of this study was to examine the quasi-static tensile strength of unidirectional polymer composites, and then use current analytic models to predict the experimental results. The different matrix materials were polyphenylene Sulfide (PPS), vinyl ester with two different fiber-matrix interface materials, and polyether ether ketone (PEEK).
- A Multiscale Method for Simulating Fracture in Polycrystalline MetalsSaether, Erik (Virginia Tech, 2008-04-18)The emerging field of nanomechanics is providing a new focus in the study of the mechanics of materials, particularly in simulating fundamental atomic mechanisms involved in the initiation and evolution of damage. Simulating fundamental material processes using first principles in physics strongly motivates the formulation of computational multiscale methods to link macroscopic failure to the underlying atomic processes from which all material behavior originates. A combined concurrent and sequential multiscale methodology is developed to analyze fracture mechanisms across length scales. Unique characterizations of grain boundary fracture mechanisms in an aluminum material system are performed at the atomic level using molecular dynamics simulation and are mapped into cohesive zone models for continuum modeling within a finite element framework. Fracture along grain boundaries typically exhibit a dependence of crack tip processes (i.e. void nucleation in brittle cleavage or dislocation emission in ductile blunting) on the direction of propagation due to slip plane orientation in adjacent grains. A new method of concurrently coupling molecular dynamics and finite element analysis frameworks is formulated to minimize the overall computational requirements in simulating atomistically large material regions. A sequential multiscale approach is advanced to model microscale polycrystal domains in which atomistically-based cohesive zone parameters are incorporated into special directional decohesion finite elements that automatically apply appropriate ductile or brittle cohesive properties depending on the direction of crack propagation. The developed multiscale analysis methodology is illustrated through a parametric study of grain boundary fracture in three-dimensional aluminum microstructures.
- Quasi-Static and Fatigue Evaluation of Pultruded Vinyl Ester/E-Glass CompositesPhifer, Stephan Paul (Virginia Tech, 1998-12-17)The quasi-static strength, stiffness, and fatigue properties of cross-ply, angle-ply, and quasi-isotropic vinyl ester/E-glass non-woven tricot stitched fabric composite laminates fabricated from the Continuous Resin Transfer Molding (CRTM) pultrusion process were the focus of this research. The tricot stitch and the 6% vinyl ester matrix cure shrinkage were found to play key roles in the quasi-static and fatigue strength and stiffness properties of these laminates. Laminates tested transverse to the pultrusion axis had greater fiber undulation and maximum of 44% quasi-static strength reduction and 8% stiffness reduction compared with axially tested specimens. While the matrix failure strain was 1.9%, failure strain of these laminates range over 1.91 to 2.08% when tested along the pultrusion axis and as low as 1.29% transverse to the pultrusion axis. Fatigue evaluation, in load control mode, evaluated laminate S-N, stiffness reduction, and residual strength. Measured S-N curves and residual strength curves compared with literature were found most like woven fabric laminates, well below aerospace grade laminates. Residual strength and life analysis using Reifsnider's methodology [43], revealed that the choice of quasi-static strength and stiffness, S-N curve, laminate stiffness reduction, and residual strength shape parameter, J, strongly affect predicted life. Predictions at high fatigue stress/low cycle were more exact than at low stress; the S-N curve was steep initially but at low stress/high cycle was nearly horizontal. The best predictions utilized separate off-axis stiffness reductions of E2 obtained from cross-ply and G12 from angle-ply laminates, the quasi-static strength and stiffness of the laminate predicted, and the average S-N and residual strength curves.
- Seismic design of energy dissipation systems for optimal structural perfromanceMoreschi, Luis M. (Virginia Tech, 2000-07-10)The usefulness of supplementary energy dissipation devices is now quite well-known in the earthquake structural engineering community for reducing the earthquake-induced response of structural systems. However, systematic design procedures for optimal sizing and placement of these protective systems in structural systems are needed and are not yet available. The main objective of this study is, therefore, to formulate a general framework for the optimal design of passive energy dissipation systems for seismic structural applications. The following four types passive energy dissipation systems have been examined in the study: (1) viscous fluid dampers, (2) viscoelastic dampers, (3) yielding metallic dampers and, (4) friction dampers. For each type of energy dissipation system, the study presents the (a) formulation of the optimal design problem, (b) consideration of several meaningful performance indices, (c) analytical and numerical procedures for seismic response and performance indices calculations, (d) procedures for obtaining the optimal design by an appropriate optimization scheme and, (e) numerical results demonstrating the effectiveness of the procedures and the optimization-based design approach. For building structures incorporating linear damping devices, such as fluid and solid viscoelastic dampers, the seismic response and performance evaluations are done by a random vibration approach for a stochastic characterization of the earthquake induced ground motion. Both the gradient projection technique and genetic algorithm approach can be conveniently employed to determine the required amount of damping material and its optimal distribution within a building structure to achieve a desired performance criterion. An approach to evaluate the sensitivity of the optimum solution and the performance function with respect to the problem parameters is also described. Several sets of numerical results for different structural configurations and for different performance indices are presented to demonstrate the effectiveness and applicability of the approach. For buildings installed with nonlinear hysteretic devices, such as yielding metallic elements or friction dampers, the computation of the seismic structural response and performance must be performed by time history analysis. For such energy dissipation devices, the genetic algorithm is more convenient to solve the optimal design problem. It avoids the convergence to a local optimal solution. To formulate the optimization problem within the framework of the genetic algorithm, the study presents the discretization procedures for various parameters of these nonlinear energy dissipation devices. To include the uncertainty about the seismic input motion in the search for optimal design, an ensemble of artificially generated earthquake excitations are considered. The similarities of the optimal design procedure with yielding metallic devices and friction devices are clearly established. Numerical results are presented to illustrate the applicability of the proposed optimization-based approach for different forms of performance indices and types of building structures.
- Seismic Performance of Rail-Counterweight System of Elevator in BuildingsRildova (Virginia Tech, 2004-09-15)Elevators serve a critical function in essential facilities such as hospitals and need to remain operational during and after earthquakes. However, they are still known to malfunction during earthquakes even after several design and sensing improvements required by the current code have been incorporated. Most of the damages were experienced or caused by the rail-counterweight system. Being the heaviest component of an elevator, the counterweight induced strong dynamic effects to the guiding system sometimes even collided and damaged the passenger car. A realistic analytical model of rail-counterweight system of an elevator that includes details of the supporting system is developed in this study. The nonlinearities caused by closing of the code specified clearances play an important role in determining the dynamic behavior of the system, and are thus included in this study. Also included are the acceleration inputs from different floor of building and the effect of different location of the counterweight along the guide rail. Parametric study is carried out to investigate the effect of different parameters on the seismic responses of the rail-counterweight system. In order to improve the seismic performance of the rail-counterweight system, several protective schemes are investigated. One simple approach is to increase the damping of the system using additional discrete viscous dampers. However, there is not much space available for installing the devices, and placement parallel to the spring at the roller guide assemblies is not quite effective due to contact between the restraining plate at the roller guide assemblies and the rail that makes the roller guides ineffective. Another method is to convert the top part of the weights into a tuned mass damper. This method can reduce the maximum stress in the rail if designed properly. The effectiveness of the passive tuned mass damper can be improved further by using it in an active mode by installing an actuator between the mass damper and the counterweight frame. The numerical results that confirm the effectiveness of such an active tuned mass damper are presented. As an alternative to the fully active control scheme, a semi-active control scheme using a magnetorheological damper device between the mass damper and the frame is also studied. This control approach is found to be as effective in reducing the seismic response as a fully active scheme. Since this MR damper can be operated using a simple battery, the external power requirements for implementation of this approach are quite minimal.
- Simulation of Fatigue Performance & Creep Rupture of Glass-Reinforced Polymeric Composites for Infrastructure ApplicationsMcBagonluri-Nuuri, David Fred (Virginia Tech, 1998-08-18)A simulation model which incorporates the statistical- and numerical-based Lattice Green Function Local Load Sharing Model and a Fracture Mechanics-based Residual Strength Model has been developed. The model simulates creep rupture by imposing a fixed load of constant stress on the composite over the simulation duration. Simulation of the fatigue of glass fiber-reinforced composites is achieved by replacing the constant stress parameter in the model with a sinusoidal wave function. Results from the creep rupture model using fused silica fiber parameters, compare well with S-2 glass/epoxy systems. Results using Mandell's postulate that fatigue failure in glass fiber-reinforced polymeric composites is a fiber-dominated mechanism, with a characteristic slope of 10 %UTS/decade are consistent with available experimental data. The slopes of fatigue curves for simulated composites for three frequencies namely: 2, 5 and 10 Hz are within 12-14 %UTS/decade compared with that of 10.6-13.0%UTS/decade for unidirectionl glass reinforced composites (epoxy and vinyl ester) obtained from Demers' [40] data.
- Time-Domain Simulations of Aerodynamic Forces on Three-Dimensional Configurations, Unstable Aeroelastic Responses, and Control by Neural Network SystemsWang, Zhicun (Virginia Tech, 2004-05-06)The nonlinear interactions between aerodynamic forces and wing structures are numerically investigated as integrated dynamic systems, including structural models, aerodynamics, and control systems, in the time domain. An elastic beam model coupled with rigid-body rotation is developed for the wing structure, and the natural frequencies and mode shapes are found by the finite-element method. A general unsteady vortex-lattice method is used to provide aerodynamic forces. This method is verified by comparing the numerical solutions with the experimental results for several cases; and thereafter applied to several applications such as the inboard-wing/twin-fuselage configuration, and formation flights. The original thought that the twin fuselage could achieve two-dimensional flow on the wing by eliminating free wing tips appears to be incorrect. The numerical results show that there can be a lift increase when two or more wings fly together, compared to when they fly alone. Flutter analysis is carried out for a High-Altitude-Long-Endurance aircraft wing cantilevered from the wall of the wind tunnel, a full-span wing mounted on a free-to-roll sting at its mid-span without and with a center mass (fuselage). Numerical solutions show that the rigidity added by the wall results in a higher flutter speed for the wall-mounted semi-model than that for the full-span model. In addition, a predictive control technique based on neural networks is investigated to suppress flutter oscillations. The controller uses a neural network model to predict future plant responses to potential control signals. A search algorithm is used to select the best control input that optimizes future plant performance. The control force is assumed to be given by an actuator that can apply a distributed torque along the spanwise direction of the wing. The solutions with the wing-tip twist or the wing-tip deflection as the plant output show that the flutter oscillations are successfully suppressed with the neural network predictive control scheme.
- Vibration and Aeroelasticity of Advanced Aircraft Wings Modeled as Thin-Walled Beams--Dynamics, Stability and ControlQin, Zhanming (Virginia Tech, 2001-10-02)Based on a refined analytical anisotropic thin-walled beam model, aeroelastic instability, dynamic aeroelastic response, active/passive aeroelastic control of advanced aircraft wings modeled as thin-walled beams are systematically addressed. The refined thin-walled beam model is based on an existing framework of the thin-walled beam model and a couple of non-classical effects that are usually also important are incorporated and the model herein developed is validated against the available experimental, Finite Element Anaylsis (FEA), Dynamic Finite Element (DFE), and other analytical predictions. The concept of indicial functions is used to develop unsteady aerodynamic model, which broadly encompasses the cases of incompressible, compressible subsonic, compressible supersonic and hypersonic flows. State-space conversion of the indicial function based unsteady aerodynamic model is also developed. Based on the piezoelectric material technology, a worst case control strategy based on the minimax theory towards the control of aeroelastic systems is further developed. Shunt damping within the aeroelastic tailoring environment is also investigated. The major part of this dissertation is organized in the form of self-contained chapters, each of which corresponds to a paper that has been or will be submitted to a journal for publication. In order to fullfil the requirement of having a continuous presentation of the topics, each chapter starts with the purely structural models and is gradually integrated with the involved interactive field disciplines.