Quasi-Static and Fatigue Evaluation of Pultruded Vinyl Ester/E-Glass Composites

SETD.PDF (1.61 MB)
Downloads: 348
TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

The quasi-static strength, stiffness, and fatigue properties of cross-ply, angle-ply, and quasi-isotropic vinyl ester/E-glass non-woven tricot stitched fabric composite laminates fabricated from the Continuous Resin Transfer Molding (CRTM) pultrusion process were the focus of this research. The tricot stitch and the 6% vinyl ester matrix cure shrinkage were found to play key roles in the quasi-static and fatigue strength and stiffness properties of these laminates. Laminates tested transverse to the pultrusion axis had greater fiber undulation and maximum of 44% quasi-static strength reduction and 8% stiffness reduction compared with axially tested specimens. While the matrix failure strain was 1.9%, failure strain of these laminates range over 1.91 to 2.08% when tested along the pultrusion axis and as low as 1.29% transverse to the pultrusion axis. Fatigue evaluation, in load control mode, evaluated laminate S-N, stiffness reduction, and residual strength. Measured S-N curves and residual strength curves compared with literature were found most like woven fabric laminates, well below aerospace grade laminates. Residual strength and life analysis using Reifsnider's methodology [43], revealed that the choice of quasi-static strength and stiffness, S-N curve, laminate stiffness reduction, and residual strength shape parameter, J, strongly affect predicted life. Predictions at high fatigue stress/low cycle were more exact than at low stress; the S-N curve was steep initially but at low stress/high cycle was nearly horizontal. The best predictions utilized separate off-axis stiffness reductions of E2 obtained from cross-ply and G12 from angle-ply laminates, the quasi-static strength and stiffness of the laminate predicted, and the average S-N and residual strength curves.

Fatigue, Composite, Residual Strength, Pultrusion