Browsing by Author "Garcia, A."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Comunidades forestales en México: Resultados preliminares de nuestra encuesta nacionalMerino, Leticia; Martinez, A. E.; Arias, A.; Garcia, A. (Universidad Nacional Autonoma de Mexico, 2007)This presentation summarizes the results of SANREM's national survey of community forests in Mexico. In addition to the presentation listed below, this was also presented at the meeting of the Comisión Nacional Forestal (CONAFOR) Program of Community Forest Development and the World Bank Division of Environment and Development in May 2007, at the National Congress of Botany (September 2007), and at the Congress of the Mexican Association for Rural Studies (October 2007).
- Determination of the Axial-Vector Weak Coupling Constant with Ultracold NeutronsLiu, J.; Mendenhall, M. P.; Holley, A. T.; Back, H. O.; Bowles, T. J.; Broussard, L. J.; Carr, Rachel E.; Clayton, S.; Currie, S.; Filippone, B. W.; Garcia, A.; Geltenbort, P.; Hickerson, K. P.; Hoagland, J.; Hogan, G. E.; Hona, B.; Ito, T. M.; Liu, C. Y.; Makela, M.; Mammei, R. R.; Martin, J. W.; Melconian, D.; Morris, C. L.; Pattie, R. W.; Galvan, A. P.; Pitt, M. L.; Plaster, B.; Ramsey, J. C.; Rios, R.; Russell, R.; Saunders, A.; Seestrom, S. J.; Sondheim, W. E.; Tatar, E.; Vogelaar, R. Bruce; VornDick, B.; Wrede, C.; Yan, H.; Young, A. R.; Ucna Collaboration (American Physical Society, 2010-10-29)A precise measurement of the neutron decay beta asymmetry A(0) has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A(0) = -0.119 66 +/- 0.000 89(-0.001 40)(+0.001 23), from which we determine the ratio of the axial- vector to vector weak coupling of the nucleon gA/gV = -1.275 90(-0.004 45)(+0.004 09).
- Encuesta nacional de comunidades forestales en MéxicoMerino, Leticia; Martinez, A. E.; Arias, A.; Garcia, A. (Mexico City, Mexico: Universidad Nacional Autonoma de Mexico, 2007)This survey form was developed by the SANREM-Mexico team to be used in a national survey of forest-dependent communities.
- Estudio estrategico sobre el sector forestal MexicanoMerino, Leticia; Rodriguez, J.; Ortiz, G.; Garcia, A. (Mexico City, Mexico: Universidad Nacional Autónoma de México (UNAM), 2008)A report assessing the state of the Mexican forest sector, created by UNAM at the request of the World Bank, the Food & Agricultural Organization, and the National Forest Commission, drawing in part on the data collected for the SANREM nationwide survey.
- First Measurement of the Neutron beta Asymmetry with Ultracold NeutronsPattie, R. W.; Anaya, J.; Back, H. O.; Boissevain, J. G.; Bowles, T. J.; Broussard, L. J.; Carr, Rachel E.; Clark, D. J.; Currie, S.; Du, S.; Filippone, B. W.; Geltenbort, P.; Garcia, A.; Hawari, A.; Hickerson, K. P.; Hill, R.; Hino, M.; Hoedl, S. A.; Hogan, G. E.; Holley, A. T.; Ito, T. M.; Kawai, T.; Kirch, K.; Kitagaki, S.; Lamoreaux, S. K.; Liu, C. Y.; Liu, J.; Makela, M.; Mammei, R. R.; Martin, J. W.; Melconian, D.; Meier, N.; Mendenhall, M. P.; Morris, C. L.; Mortensen, R.; Pichlmaier, A.; Pitt, M. L.; Plaster, B.; Ramsey, J. C.; Rios, R.; Sabourov, K.; Sallaska, A. L.; Saunders, A.; Schmid, R.; Seestrom, S. J.; Servicky, C.; Sjue, S. K. L.; Smith, D.; Sondheim, W. E.; Tatar, E.; Teasdale, W.; Terai, C.; Tipton, B.; Utsuro, M.; Vogelaar, R. Bruce; Wehring, B. W.; Xu, Y. P.; Young, A. R.; Yuan, J.; Ucna Collaboration (American Physical Society, 2009-01-09)We report the first measurement of an angular correlation parameter in neutron beta decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for similar to 30 s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2 x 2 pi solenoidal spectrometer. We determine a value for the beta-asymmetry parameter A(0) = -0.1138 +/- 0.0046 +/- 0.0021.
- Fundamental Physics at the Intensity FrontierHewett, J. L.; Weerts, H.; Brock, R.; Butler, J. N.; Casey, B. C. K.; Collar, J.; Gouvea, A. D.; Essig, R.; Grossman, Y.; Haxton, W.; Jaros, J. A.; Jung, C. K.; Lu, Z. T.; Pitts, K.; Ligeti, Z.; Patterson, J. R.; Ramsey-Musolf, M.; Ritchie, J. L.; Roodman, A.; Scholberg, K.; Wagner, C. E. M.; Zeller, Geralyn P.; Aefsky, S.; Afanasev, A.; Agashe, K.; Albright, C. H.; Alonso, J.; Ankenbrandt, C. M.; Aoki, M.; Arguelles, C. A.; Arkani-Hamed, N.; Armendariz, J. R.; Armendariz-Picon, C.; Diaz, E. A.; Asaadi, J.; Asner, D. M.; Babu, K. S.; Bailey, K.; Baker, O.; Balantekin, A. B.; Baller, B.; Bass, M.; Batell, B.; Beacham, J.; Behr, J.; Berger, N.; Bergevin, M.; Berman, E.; Bernstein, R.; Bevan, A. J.; Bishai, M.; Blanke, M.; Blessing, S.; Blondel, A.; Blum, T.; Bock, G.; Bodek, A.; Bonvicini, G.; Bossi, F.; Boyce, J.; Breedon, R.; Breidenbach, M.; Brice, S. J.; Briere, R. A.; Brodsky, S.; Bromberg, C.; Bross, A.; Browder, T. E.; Bryman, D. A.; Buckley, M.; Burnstein, R.; Caden, E.; Campana, P.; Carlini, R.; Carosi, G.; Castromonte, C.; Cenci, R.; Chakaberia, I.; Chen, M. C.; Cheng, C. H.; Choudhary, B.; Christ, N. H.; Christensen, E.; Christy, M. E.; Chupp, T. E.; Church, E.; Cline, D. B.; Coan, T. E.; Coloma, P.; Comfort, J.; Coney, L.; Cooper, J.; Cooper, R. J.; Cowan, R.; Cowen, D. F.; Cronin-Hennessy, D.; Datta, A.; Davies, G. S.; Demarteau, M.; DeMille, D. P.; Denig, A.; Dermisek, R.; Deshpande, A.; Dewey, M. S.; Dharmapalan, R.; Dhooghe, J.; Dietrich, M. R.; Diwan, M.; Djurcic, Zelimir; Dobbs, S.; Duraisamy, M.; Dutta, B.; Duyang, H.; Dwyer, D. A.; Eads, M.; Echenard, B.; Elliott, S. R.; Escobar, C. O.; Fajans, J.; Farooq, S.; Faroughy, C.; Fast, J. E.; Feinberg, B.; Felde, J.; Feldman, G.; Fierlinger, P.; Perez, P. F.; Filippone, B. W.; Fisher, P.; Fleming, B. T.; Flood, K. T.; Forty, R.; Frank, M. J.; Freyberger, A.; Friedland, A.; Gandhi, R.; Ganezer, K. S.; Garcia, A.; Garcia, F. G.; Gardiner, S.; Garrison, L.; Gasparian, A.; Geer, S.; Gehman, V. M.; Gershon, T.; Gilchriese, M.; Ginsberg, C.; Gogoladze, I.; Gonderinger, M.; Goodman, M.; Gould, H.; Graham, M.; Graham, P. W.; Gran, R.; Grange, J.; Gratta, G.; Green, J. P.; Greenlee, H.; Group, R. C.; Guardincerri, E.; Gudkov, V.; Guenette, R.; Haas, A.; Hahn, A.; Han, T.; Handler, T.; Hardy, J. C.; Harnik, R.; Harris, D. A.; Harris, F. A.; Harris, P. G.; Hartnett, J.; He, B.; Heckel, B. R.; Heeger, K. M.; Henderson, S.; Hertzog, D.; Hill, R.; Hinds, E. A.; Hitlin, D. G.; Holt, R. J.; Holtkamp, N.; Horton-Smith, Glenn A.; Huber, Patrick; Huelsnitz, W.; Imber, J.; Irastorza, I.; Jaeckel, J.; Jaegle, I.; James, C.; Jawahery, A.; Jensen, D.; Jessop, C. P.; Jones, B.; Jostlein, H.; Junk, T.; Kagan, A. L.; Kalita, M.; Kamyshkov, Y.; Kaplan, D. M.; Karagiorgi, Georgia S.; Karle, A.; Katori, T.; Kayser, B.; Kephart, R.; Kettell, S. H.; Kim, Y.-K.; Kirby, M.; Kirch, K.; Klein, J.; Kneller, J.; Kobach, A.; Kohl, M.; Kopp, J.; Kordosky, M.; Korsch, W.; Kourbanis, I.; Krisch, A. D.; Križan, P.; Kronfeld, A. S.; Kulkarni, S.; Kumar, K. S.; Kuno, Y.; Kutter, T.; Lachenmaier, Tobias; Lamm, M.; Lancaster, J.; Lancaster, M.; Lane, C.; Lang, K.; Langacker, P.; Lazarevic, S.; Le, T.; Lee, K.; Lesko, K. T.; Li, Y.; Lindgren, M.; Lindner, A.; Link, Jonathan M.; Lissauer, D.; Littenberg, L. S.; Littlejohn, B.; Liu, C. Y.; Loinaz, William; Lorenzon, W.; Louis, W. C.; Lozier, J.; Ludovici, L.; Lueking, L.; Lunardini, C.; MacFarlane, D. B.; Machado, P. A. N.; Mackenzie, P. B.; Maloney, J.; Marciano, W. J.; Marsh, W.; Marshak, M.; Martin, J. W.; Mauger, C.; McFarland, K. S.; McGrew, C.; McLaughlin, G.; McKeen, D.; McKeown, R.; Meadows, B. T.; Mehdiyev, R.; Melconian, D.; Merkel, H.; Messier, M.; Miller, J. P.; Mills, G.; Minamisono, U. K.; Mishra, S. R.; Mocioiu, I.; Sher, S. M.; Mohapatra, R. N.; Monreal, B.; Moore, C. D.; Morfin, J. G.; Mousseau, J.; Moustakas, L. A.; Mueller, G.; Mueller, P.; Muether, M.; Mumm, H. P.; Munger, C.; Murayama, H.; Nath, P.; Naviliat-Cuncin, O.; Nelson, J. K.; Neuffer, D.; Nico, J. S.; Norman, A.; Nygren, D.; Obayashi, Y.; O'Connor, T. P.; Okada, Y.; Olsen, J.; Orozco, L.; Orrell, J. L.; Osta, J.; Pahlka, B.; Paley, J.; Papadimitriou, V.; Papucci, M.; Parke, S.; Parker, R. H.; Parsa, Z.; Partyka, K.; Patch, A.; Pati, J. C.; Patterson, R. B.; Pavlovic, Z.; Paz, G.; Perdue, G. N.; Perevalov, D.; Perez, G.; Petti, R.; Pettus, W.; Piepke, A.; Pivovaroff, M. J.; Plunkett, R.; Polly, C. C.; Pospelov, M.; Povey, R.; Prakash, A.; Purohit, M. V.; Raby, S.; Raaf, J. L.; Rajendran, R.; Rajendran, S.; Rameika, G.; Ramsey, R.; Rashed, A.; Ratcliff, B. N.; Rebel, B.; Redondo, J.; Reimer, P.; Reitzner, D.; Ringer, F.; Ringwald, A.; Riordan, S.; Roberts, B. L.; Roberts, D. A.; Robertson, R.; Robicheaux, F.; Rominsky, M.; Roser, R.; Rosner, J. L.; Rott, C.; Rubin, P.; Saito, N.; Sanchez, Maria Cristina; Sarkar, S.; Schellman, H.; Schmidt, B.; Schmitt, M.; Schmitz, D. W.; Schneps, J.; Schopper, A.; Schuster, P.; Schwartz, A. J.; Schwarz, M.; Seeman, J.; Semertzidis, Y. K.; Seth, K. K.; Shafi, Q.; Shanahan, P.; Sharma, R.; Sharpe, S. R.; Shiozawa, M.; Shiltsev, V.; Sigurdson, K.; Sikivie, P.; Singh, J.; Sivers, D.; Skwarnicki, T.; Smith, N.; Sobczyk, J.; Sobel, H.; Soderberg, M.; Song, Y. H.; Soni, A.; Souder, P. A.; Sousa, A.; Spitz, Joshua; Stancari, M.; Stavenga, G. C.; Steffen, J. H.; Stepanyan, S.; Stoeckinger, D.; Stone, S.; Strait, J.; Strassler, M.; Sulai, I. A.; Sundrum, R.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Takeuchi, Tatsu; Tanedo, P.; Taneja, S.; Tang, J.; Tanner, D. B.; Tayloe, R.; Taylor, I.; Thomas, J.; Thorn, C.; Tian, X.; Tice, B. G.; Tobar, M.; Tolich, N.; Toro, N.; Towner, I. S.; Tsai, Y.; Tschirhart, R.; Tunnell, C. D.; Tzanov, M.; Upadhye, A.; Urheim, J.; Vahsen, S. E.; Vainshtein, A.; Valencia, E.; Water, R. G. V. D.; Water, RSVD; Velasco, M.; Vogel, J.; Vogel, P.; Vogelsang, W.; Wah, Y W.; Walker, D.; Weiner, N.; Weltman, A.; Wendell, R.; Wester, W.; Wetstein, M.; White, C.; Whitehead, L.; Whitmore, J.; Widmann, E.; Wiedemann, G.; Wilkerson, J.; Wilkinson, G.; Wilson, P.; Wilson, R. J.; Winter, W.; Wise, Milton B.; Wodin, J.; Wojcicki, S.; Wojtsekhowski, B.; Wongjirad, T.; Worcester, E.; Wurtele, J.; Xin, T.; Xu, J.; Yamanaka, T.; Yamazaki, Y.; Yavin, I.; Yeck, J.; Yeh, M.; Yokoyama, M.; Yoo, J.; Young, A.; Zimmerman, E.; Zioutas, K.; Zisman, M.; Zupan, J.; Zwaska, R. (2011)The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.
- How might shadow price restrictions reduce technical efficiency? Evidence from a restricted DEA analysis of coffee farms in VietnamGarcia, A.; Shively, Gerald E. (Maldon, MA: Blackwell Publishing, 2010)This article analyzes the effect of potential restrictions on the shadow prices of chemical inputs on technical efficiency among smallholder coffee farmers in Vietnam. Population growth and an increase in the amount of land being converted to coffee farms has caused rapid depletion and degradation of natural resources in many regions. In addition, high international prices for coffee and high government incentives have influenced many farmers to switch to coffee production. Because of increased coffee farming activities, there is an increased need to apply chemical inputs, such as pesticides and herbicides, to the land. This study used an input-oriented data envelopment analysis (DEA) model to analyze whether reducing the amount of chemicals used, in an effort to increase environmental quality, will negatively impact the technical efficiency for smallholders. The results showed that restricting the shadow price of chemical inputs does not drastically affect patterns or measures of short-run efficiency. Therefore, the health of the environment can be improved with only small sacrifices in technical efficiency at the smallholder level.
- Measurement of the neutron beta-asymmetry parameter A(0) with ultracold neutronsPlaster, B.; Rios, R.; Back, H. O.; Bowles, T. J.; Broussard, L. J.; Carr, Rachel E.; Clayton, S.; Currie, S.; Filippone, B. W.; Garcia, A.; Geltenbort, P.; Hickerson, K. P.; Hoagland, J.; Hogan, G. E.; Hona, B.; Holley, A. T.; Ito, T. M.; Liu, C. Y.; Liu, J.; Makela, M.; Mammei, R. R.; Martin, J. W.; Melconian, D.; Mendenhall, M. P.; Morris, C. L.; Mortensen, R.; Pattie, R. W.; Galvan, A. P.; Pitt, M. L.; Ramsey, J. C.; Russell, R.; Saunders, A.; Schmid, R.; Seestrom, S. J.; Sjue, S.; Sondheim, W. E.; Tatar, E.; Tipton, B.; Vogelaar, R. Bruce; VornDick, B.; Wrede, C.; Xu, Y. P.; Yan, H.; Young, A. R.; Yuan, J.; Ucna Collaboration (American Physical Society, 2012-11-12)We present a detailed report of a measurement of the neutron beta-asymmetry parameter A(0), the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T 2 x 2 pi solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report A(0) = -0.11966 +/- 0.00089(-0.00140)(+0.00123), from lambda = g(A)/g(V) = -1.27590 +/- 0.00239(-0.00377)(+0.00331). Complete details of the analysis are presented.
- Performance of the Los Alamos National Laboratory spallation-driven solid-deuterium ultra-cold neutron sourceSaunders, A.; Makela, M.; Bagdasarova, Y.; Back, H. O.; Boissevain, J. G.; Broussard, L. J.; Bowles, T. J.; Carr, Rachel E.; Currie, S. A.; Filippone, B. W.; Garcia, A.; Geltenbort, P.; Hickerson, K. P.; Hill, R. E.; Hoagland, J.; Hoedl, S. A.; Holley, A. T.; Hogan, G.; Ito, T. M.; Lamoreaux, Steve; Liu, Chen-Yu; Liu, J.; Mammei, R. R.; Martin, J.; Melconian, D.; Mendenhall, M. P.; Morris, C. L.; Mortensen, R. N.; Pattie, R. W., Jr.; Pitt, M.; Plaster, B.; Ramsey, J.; Rios, R.; Sallaska, A. L.; Seestrom, S. J.; Sharapov, E. I.; Sjue, S.; Sondheim, W. E.; Teasdale, W.; Young, A. R.; VornDick, B.; Vogelaar, R. Bruce; Wang, Z.; Xu, Yanping (AIP Publishing, 2013-01)In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of similar to 1500 cm(3). (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770063]
- Precision measurement of the neutron beta-decay asymmetryMendenhall, M. P.; Pattie, R. W.; Bagdasarova, Y.; Berguno, D. B.; Broussard, L. J.; Carr, Rachel E.; Currie, S.; Ding, X.; Filippone, B. W.; Garcia, A.; Geltenbort, P.; Hickerson, K. P.; Hoagland, J.; Holley, A. T.; Hong, R.; Ito, T. M.; Knecht, A.; Liu, C. Y.; Liu, J. L.; Makela, M.; Mammei, R. R.; Martin, J. W.; Melconian, D.; Moore, S. D.; Morris, C. L.; Galvan, A. P.; Picker, R.; Pitt, M. L.; Plaster, B.; Ramsey, J. C.; Rios, R.; Saunders, A.; Seestrom, S. J.; Sharapov, E. I.; Sondheim, W. E.; Tatar, E.; Vogelaar, R. Bruce; VornDick, B.; Wrede, C.; Young, A. R.; Zeck, B. A.; Ucna Collaboration (American Physical Society, 2013-03-25)A new measurement of the neutron beta-decay asymmetry A(0) has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A(0) = -0.11954(55)(stat)(98)(syst), corresponding to the ratio of axial-vector to vector coupling lambda = g(A)/g(V) = -1.2756(30).