Browsing by Author "Garcia, David"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Additive Friction Stir-Enabled Solid-State Additive Manufacturing for the Repair of 7075 Aluminum AlloyGriffiths, R. Joey; Petersen, Dylan T.; Garcia, David; Yu, Hang Z. (MDPI, 2019-08-23)The repair of high strength, high performance 7075 aluminum alloy is essential for a broad range of aerospace and defense applications. However, it is challenging to implement it using traditional fusion welding-based approaches, owing to hot cracking and void formation during solidification. Here, the use of an emerging solid-state additive manufacturing technology, additive friction stir deposition, is explored for the repair of volume damages such as through -holes and grooves in 7075 aluminum alloy. Three repair experiments have been conducted: double through-hole filling, single through-hole filling, and long, wide-groove filling. In all experiments, additive friction stir deposition proves to be effective at filling the entire volume. Additionally, sufficient mixing between the deposited material and the side wall of the feature is always observed in the upper portions of the repair. Poor mixing and inadequate repair quality have been observed in deeper portions of the filling in some scenarios. Based on these observations, the advantages and disadvantages of using additive friction stir deposition for repairing volume damages are discussed. High quality and highly flexible repairs are expected with systematic optimization work on process control and repair strategy development in the future.
- In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysisWang, Rongxuan; Garcia, David; Kamath, Rakesh R.; Dou, Chaoran; Ma, Xiaohan; Shen, Bo; Choo, Hahn; Fezzaa, Kamel; Yu, Hang Z.; Kong, Zhenyu (James) (Nature Portfolio, 2022-08-12)Laser powder bed fusion is a promising technology for local deposition and microstructure control, but it suffers from defects such as delamination and porosity due to the lack of understanding of melt pool dynamics. To study the fundamental behavior of the melt pool, both geometric and thermal sensing with high spatial and temporal resolutions are necessary. This work applies and integrates three advanced sensing technologies: synchrotron X-ray imaging, high-speed IR camera, and high-spatial-resolution IR camera to characterize the evolution of the melt pool shape, keyhole, vapor plume, and thermal evolution in Ti-6Al-4V and 410 stainless steel spot melt cases. Aside from presenting the sensing capability, this paper develops an effective algorithm for high-speed X-ray imaging data to identify melt pool geometries accurately. Preprocessing methods are also implemented for the IR data to estimate the emissivity value and extrapolate the saturated pixels. Quantifications on boundary velocities, melt pool dimensions, thermal gradients, and cooling rates are performed, enabling future comprehensive melt pool dynamics and microstructure analysis. The study discovers a strong correlation between the thermal and X-ray data, demonstrating the feasibility of using relatively cheap IR cameras to predict features that currently can only be captured using costly synchrotron X-ray imaging. Such correlation can be used for future thermal-based melt pool control and model validation.
- Investigation of the Processing History during Additive Friction Stir Deposition using In-process Monitoring TechniquesGarcia, David (Virginia Tech, 2021-02-01)Additive friction stir deposition (AFSD) is an emerging solid-state metal additive manufacturing technology that uses deformation bonding to create near-net shape 3D components. As a developing technology, a deeper understanding of the processing science is necessary to establish the process-structure relationships and enable improved control of the as-printed microstructure and material properties. AFSD provides a unique opportunity to explore the friction stir fundamentals via direct observation of the material during processing. This work explores the relationship between the processing parameters (e.g., tool rotation rate Ω, tool velocity V, and material feed rate F) and the thermomechanical history of the material by process monitoring of i) the temperature evolution, ii) the force evolution, and iii) the interfacial contact state between the tool and deposited material. Empirical trends are established for the peak temperature with respect to the processing conditions for Cu and Al-Mg-Si, but a key difference is noted in the form of the power law relationship: Ω/V for Cu and Ω2/V for Al-Mg-Si. Similarly, the normal force Fz for both materials correlates to V and inversely with Ω. For Cu both parameters show comparable influence on the normal force, whereas Ω is more impactful than V for Al-Mg-Si. On the other hand, the torque Mz trends for Al-Mg-Si are consistent with the normal force trends, however for Cu there is no direct correlation between the processing parameters and the torque. These distinct relationships and thermomechanical histories are directly linked to the contact states observed during deformation monitoring of the two material systems. In Cu, the interfacial contact between the material and tool head is characterized by a full slipping condition (δ=1). In this case, interfacial friction is the dominant heat generation mechanism and compression is the primary deformation mechanism. In Al-Mg-Si, the interfacial contact is characterized by a partial slipping/sticking condition (0<δ<1), so both interfacial friction and plastic energy dissipation are important mechanisms for heat generation and material deformation. Finally, an investigation into the contact evolution at different processing parameters shows that the fraction of sticking is critically dependent on the processing parameters which has many implications on the thermomechanical processing history.
- Towards underwater additive manufacturing via additive friction stir depositionGriffiths, R. Joey; Gotawala, Nikhil; Hahn, Greg D.; Garcia, David; Yu, Hang Z. (Elsevier, 2022-11)Given the challenges in feed material supply and quality control, metal additive manufacturing has rarely been implemented in austere environments, especially underwater. This paper explores the underwater operation potential of an emerging solid-state additive technology: additive friction stir deposition, wherein material feeding and bonding are enabled by mechanical forces with minimal influences from water. It is demonstrated that additive friction stir deposition of 304 stainless steel can be successfully performed with the print head and substrate immersed in water. High temperature is reached in the deposition zone (>60% melting temperature); the material deposition behavior is similar to that in typical open-air operation. The as-deposited material is fully-dense, having fewer annealing twins and a substantially smaller grain size than the feed material (4.98 lm vs. 31.44 lm). Such microstructural changes stem from dynamic recrystallization caused by the large strain and high temperature introduced during deposition. In addition to grain refinement, small equiaxed dispersoids (-2-3 lm or less) are formed and evenly distributed in the austenite steel matrix. Rich in Cr, Mn, and O, these particles likely result from the reaction between the elements in stainless steel and water at elevated temperatures. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).