Browsing by Author "Geissinger, Jack H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Modeling the Metabolic Reductions of a Passive Back-Support ExoskeletonAlemi, Mohammad Mehdi; Simon, Athulya A.; Geissinger, Jack H.; Asbeck, Alan T. (2022-01-13)Despite several attempts to quantify the metabolic savings resulting from the use of passive back-support exoskeletons (BSEs), no study has modeled the metabolic change while wearing an exoskeleton during lifting. The objectives of this study were to: 1) quantify the metabolic reductions due to the VT-Lowe's exoskeleton during lifting; and 2) provide a comprehensive model to estimate the metabolic reductions from using a passive BSE. In this study, 15 healthy adults (13M, 2F) of ages 20 to 34 years (mean=25.33, SD=4.43) performed repeated freestyle lifting and lowering of an empty box and a box with 20% of their bodyweight. Oxygen consumption and metabolic expenditure data were collected. A model for metabolic expenditure was developed and fitted with the experimental data of two prior studies and the without-exoskeleton experimental results. The metabolic cost model was then modified to reflect the effect of the exoskeleton. The experimental results revealed that VT-Lowe's exoskeleton significantly lowered the oxygen consumption by ~9% for an empty box and 8% for a 20% bodyweight box, which corresponds to a net metabolic cost reduction of ~12% and ~9%, respectively. The mean metabolic difference (i.e., without-exo minus with-exo) and the 95% confidence interval were 0.36 and (0.2-0.52) [Watts/kg] for 0% bodyweight, and 0.43 and (0.18-0.69) [Watts/kg] for 20% bodyweight. Our modeling predictions for with-exoskeleton conditions were precise, with absolute freestyle prediction errors of <2.1%. The model developed in this study can be modified based on different study designs, and can assist researchers in enhancing designs of future lifting exoskeletons.
- Motion Inference Using Sparse Inertial Sensors, Self-Supervised Learning, and a New Dataset of Unscripted Human MotionGeissinger, Jack H.; Asbeck, Alan T. (MDPI, 2020-11-06)In recent years, wearable sensors have become common, with possible applications in biomechanical monitoring, sports and fitness training, rehabilitation, assistive devices, or human-computer interaction. Our goal was to achieve accurate kinematics estimates using a small number of sensors. To accomplish this, we introduced a new dataset (the Virginia Tech Natural Motion Dataset) of full-body human motion capture using XSens MVN Link that contains more than 40 h of unscripted daily life motion in the open world. Using this dataset, we conducted self-supervised machine learning to do kinematics inference: we predicted the complete kinematics of the upper body or full body using a reduced set of sensors (3 or 4 for the upper body, 5 or 6 for the full body). We used several sequence-to-sequence (Seq2Seq) and Transformer models for motion inference. We compared the results using four different machine learning models and four different configurations of sensor placements. Our models produced mean angular errors of 10–15 degrees for both the upper body and full body, as well as worst-case errors of less than 30 degrees. The dataset and our machine learning code are freely available.
- Teaching Natural Language Processing through Big Data Text Summarization with Problem-Based LearningLi, Liuqing; Geissinger, Jack H.; Ingram, William A.; Fox, Edward A. (Sciendo, 2020)Natural language processing (NLP) covers a large number of topics and tasks related to data and information management, leading to a complex and challenging teaching process. Meanwhile, problem-based learning is a teaching technique specifically designed to motivate students to learn efficiently, work collaboratively, and communicate effectively. With this aim, we developed a problem-based learning course for both undergraduate and graduate students to teach NLP. We provided student teams with big data sets, basic guidelines, cloud computing resources, and other aids to help different teams in summarizing two types of big collections: Web pages related to events, and electronic theses and dissertations (ETDs). Student teams then deployed different libraries, tools, methods, and algorithms to solve the task of big data text summarization. Summarization is an ideal problem to address learning NLP since it involves all levels of linguistics, as well as many of the tools and techniques used by NLP practitioners. The evaluation results showed that all teams generated coherent and readable summaries. Many summaries were of high quality and accurately described their corresponding events or ETD chapters, and the teams produced them along with NLP pipelines in a single semester. Further, both undergraduate and graduate students gave statistically significant positive feedback, relative to other courses in the Department of Computer Science. Accordingly, we encourage educators in the data and information management field to use our approach or similar methods in their teaching and hope that other researchers will also use our data sets and synergistic solutions to approach the new and challenging tasks we addressed.