Browsing by Author "Hawley, Dana M."
Now showing 1 - 20 of 44
Results Per Page
Sort Options
- Antibiotic perturbation of gut bacteria does not significantly alter host responses to ocular disease in a songbird speciesWeitzman, Chava L.; Belden, Lisa K.; May, Meghan; Langager, Marissa M.; Dalloul, Rami A.; Hawley, Dana M. (PeerJ, 2022-06-10)Bacterial communities in and on wild hosts are increasingly appreciated for their importance in host health. Through both direct and indirect interactions, bacteria lining vertebrate gut mucosa provide hosts protection against infectious pathogens, sometimes even in distal body regions through immune regulation. In house finches (Haemorhous mexicanus), the bacterial pathogen Mycoplasma gallisepticum (MG) causes conjunctivitis, with ocular inflammation mediated by pro- and antiinflammatory cytokines and infection triggering MG-specific antibodies. Here, we tested the role of gut bacteria in host responses to MG by using oral antibiotics to perturb bacteria in the gut of captive house finches prior to experimental inoculation with MG. We found no clear support for an impact of gut bacterial disruption on conjunctival pathology, MG load, or plasma antibody levels. However, there was a non-significant trend for birds with intact gut communities to have greater conjunctival pathology, suggesting a possible impact of gut bacteria on pro-inflammatory cytokine stimulation. Using 16S bacterial rRNA amplicon sequencing, we found dramatic differences in cloacal bacterial community composition between captive, wild-caught house finches in our experiment and free-living finches from the same population, with lower bacterial richness and core communities composed of fewer genera in captive finches. We hypothesize that captivity may have affected the strength of results in this experiment, necessitating further study with this consideration. The abundance of anthropogenic impacts on wildlife and their bacterial communities, alongside the emergence and spread of infectious diseases, highlights the importance of studies addressing the role of commensal bacteria in health and disease, and the consequences of gut bacterial shifts on wild hosts.
- Antimicrobial Resistance Mitigation [ARM] Concept PaperVikesland, Peter J.; Alexander, Kathleen A.; Badgley, Brian D.; Krometis, Leigh-Anne H.; Knowlton, Katharine F.; Gohlke, Julia M.; Hall, Ralph P.; Hawley, Dana M.; Heath, Lenwood S.; Hession, W. Cully; Hull, Robert Bruce IV; Moeltner, Klaus; Ponder, Monica A.; Pruden, Amy; Schoenholtz, Stephen H.; Wu, Xiaowei; Xia, Kang; Zhang, Liqing (Virginia Tech, 2017-05-15)The development of viable solutions to the global threat of antimicrobial resistance requires a transdisciplinary approach that simultaneously considers the clinical, biological, social, economic, and environmental drivers responsible for this emerging threat. The vision of the Antimicrobial Resistance Mitigation (ARM) group is to build upon and leverage the present strengths of Virginia Tech in ARM research and education using a multifaceted systems approach. Such a framework will empower our group to recognize the interconnectedness and interdependent nature of this threat and enable the delineation, development, and testing of resilient approaches for its mitigation. We seek to develop innovative and sustainable approaches that radically advance detection, characterization, and prevention of antimicrobial resistance emergence and dissemination in human-dominated and natural settings...
- Assessing Diversity, Culturability and Context-dependent Function of the Amphibian Skin MicrobiomeMedina Lopez, Daniel Christofer (Virginia Tech, 2018-08-17)Emergent infectious diseases are a major driver of the accelerated rates of biodiversity loss that are being documented around the world. Global losses of amphibians provide evidence of this, especially those associated with chytridiomycosis, a lethal skin disease caused by the fungus Batrachochytrium dendrobatidis (Bd). Amphibian skin can harbor diverse bacterial communities that, in some cases, can inhibit the growth of Bd. Thus, there is interest in using skin bacteria as probiotics to mitigate Bd infections in amphibians. However, experiments testing this conservation approach have yielded mixed results, suggesting a lack of understanding about the ecology of these microbial communities. My dissertation research aimed to assess basic ecological questions in microbial ecology and to contribute to the development of probiotics using amphibian skin bacteria. First, to assess whether environmental conditions influence the function of amphibian skin bacterial communities, I conducted a field survey across low and high elevation populations of an amphibian host to assess their skin bacterial communities and metabolite profiles. I found that similar bacterial communities produced different metabolites at different locations, implying a potential functional plasticity. Second, since culturing is critical for characterizing bacteria, I aimed to identify the culture media (low vs high nutrient concentration) that recovers the most representative fraction of the amphibian skin bacterial community. I found that media with low nutrient concentrations cultured a higher diversity and recovered a more representative fraction of the diversity occurring on amphibian skin. I also determined that sampling more individuals is critical to maximize culture collections. Third, I assessed the diversity of the amphibian skin fungal community in relation to Bd infection across eight amphibian species. I determined that amphibian species was the most important predictor of fungal diversity and community structure, and that Bd infection did not have a strong impact. My dissertation highlights the importance of environmental conditions in the function of amphibian skin bacteria, expands our knowledge of the understudied fungal component of the amphibian skin microbiome, and complements current efforts in amphibian conservation.
- Behavior, Physiology, and Reproduction of Urban and Rural Song Sparrows (Melospiza Melodia)Foltz, Sarah (Virginia Tech, 2015-06-01)Urban areas are a unique and growing habitat type. Animals living in this novel habitat are faced with new challenges, but may also encounter novel opportunities. Though urban animals have been observed to differ from their rural counterparts in a variety of behavioral and physiological traits, little is known about the specific features of urban areas that drive these differences and whether they are adaptive. Understanding this process is important from a conservation perspective and also to gain insight into how animals colonize novel habitats more generally. Using song sparrows (Melospiza melodia), a native songbird commonly found in urban areas, I explored responses to urbanization and the drivers and consequences of these responses with an eye toward understanding whether song sparrows had successfully adapted to urban habitats (Chapter I). I began by comparing body condition and levels of corticosterone, a hormone associated with energy management and the stress response in birds, between urban and rural populations (Chapter II). There was more variation across years than between habitats, suggesting that a variable environmental factor common to both habitats is the primary driver of these traits. I then compared territorial aggression levels and tested the effect of food availability on aggression (Chapter III). Fed rural birds and all urban birds had higher aggression levels than unfed rural birds, indicating that territorial aggression is related to resource availability in this species and that urban habitats may be perceived as more desirable. Finally, I looked for differences in reproductive timing and success and for relationships between reproductive success and aggression (Chapter IV). Higher reproductive success in urban populations, coupled with differences in the timing of successful nests between habitats, suggest differences in predation risk and predator community structure between habitats. In Chapter V, I synthesize my major findings and suggest directions for future research building on these results. I conclude that urban song sparrows differ from rural birds, that these differences are influenced by resource availability, and that urban habitats can potentially support stable song sparrow populations, though more research is necessary to determine the fitness impacts of specific traits that change with urbanization.
- Behavioral Heterogeneity and Disease Dynamics in House Finches (Haemorhous mexicanus)Moyers, Sahnzi C. (Virginia Tech, 2017-06-16)Infectious disease is a ubiquitous aspect of life on earth; however, parasites and pathogens are not distributed equally among individual hosts. Due to its ability to shape the way that individuals interact with other potential hosts and the environment, behavior is one of the most salient ways through which host biology varies in the context of disease. Variation in animal behavior can impact both transmission and the extent of a host's pathogen acquisition, and thus can have important consequences for infectious disease dynamics. Additionally, in this world of rapid urbanization where landscapes and wildlife resources are being altered, it is important to understand the ways in which human activity impact wildlife behavior, and in turn, disease dynamics. Here, we used both observational and experimental studies in field and laboratory settings to investigate the relationships among host behavior and physiology, anthropogenic food sources, and disease transmission in a natural host-pathogen system. First, we examined the relationship between house finch (Haemorhous mexicanus) stress physiology, exploratory behaviors, and social behaviors in the wild. We provided evidence that more exploratory house finches interact with more individuals in the wild, and have higher baseline concentrations of circulating stress hormones. Next, we found evidence that the amount of time spent on bird feeders drives both the acquisition and transmission of the bacterial pathogen Mycoplasma gallisepticum (Mg), indicating that variation in host foraging behavior has important transmission consequences in this system. Lastly, we found that the density of bird feeders available to house finches predicts the extent of Mg transmission in captivity. Taken together, these results highlight the important role that behavioral heterogeneity can play in the acquisition and spread of pathogens, as well as the potential impacts of human behavior on wildlife disease dynamics. Future work should seek to identify specific physiological mechanisms driving Mg acquisition and transmission as they relate to variation in host behavior, and the ways in which bird feeders impact disease-relevant behaviors in the wild.
- Bidirectional interactions between behavior and disease in banded mongooses (Mungos mungo) infected with Mycobacterium mungiFairbanks, Bonnie Marie (Virginia Tech, 2013-09-04)Behavior and disease interact bidirectionally and on multiple levels of host organization, and these interactions can have important consequences for population-level disease dynamics. I explored how behavior can both influence and respond to infectious disease in a banded mongoose population experiencing epidemics of tuberculosis (TB) caused by the bacterial pathogen Mycobacterium mungi in the M. tuberculosis complex (Alexander et al. 2010). Banded mongooses are highly social carnivores that live in troops of 5 to 65 individuals. Mycobacterium mungi appears to be primarily environmentally transmitted, but direct horizontal transmission cannot be ruled out. Approximately 10-20% of mongooses become diseased with TB each year in the study population in and around Chobe National Park, Botswana, and all mongooses with clinical signs of TB die within months. Characteristics of both banded mongooses and clinical TB provided a productive study system for exploring interactions between behavior and disease: first, free-living mongooses can be habituated and directly observed; second, the clinical signs of TB can be visually assessed non-invasively; and third, the mongooses' high sociality and egalitarianism provide a unique and ecologically relevant host social system for examining bidirectional interactions between behavior and infectious disease. I found that banded mongooses influenced and responded to disease through their behavior at both the individual and troop level, with possible implications for banded mongoose population and disease dynamics. Due to the environmental transmission of M. mungi, which appears to invade mongooses through breaks in the skin and nasal planum (Alexander et al. 2010), I focused on aggressive interactions as a potential risk factor for acquiring TB in this system. Troops with higher levels of aggression had more injuries, and at the individual level, injuries were a strong predictor of TB, suggesting that aggression may increase risk of disease by creating potential invasion sites for the pathogen. Troops were more aggressive when they foraged in garbage than when they foraged in other habitats, presumably due to the concentration of resources at this highly modified habitat. Overall, my results on how behavior can influence disease in this system suggest that anthropogenic supplementation of food, albeit inadvertent in this system, augments aggression levels in banded mongooses and may in turn lead to a higher incidence of TB. Second, I examined how behavior responds to disease in banded mongooses. Diseased individuals showed significantly lower activity and alertness, but intriguingly, did not show a reduction in overall social behaviors. Diseased individuals were less likely to disperse than healthy individuals, and healthy individuals with diseased troopmates may have been more likely to disperse than individuals without diseased troopmates. Despite this latter possible increase in dispersal in the presence of diseased conspecifics, diseased individuals were not avoided by their troopmates in daily social interactions. For example, diseased individuals were allogroomed at a higher than expected rate even though their reciprocation during allogrooming was approximately half that of healthy individuals. These interactions between behavior and disease have implications for banded mongoose troop and population dynamics, via changes in dispersal behavior and mortality, and can also affect disease dynamics, such as transmission rate. For example, changes to dispersal may affect the amount of inbreeding and outbreeding that occurs in this normally inbred species, and disease might be amplified in areas where aggression is increased by resource augmentation from humans. Additionally, the role that garbage plays in mongoose aggression suggests that humans may be inadvertently increasing disease incidence in this system, as well as in other taxa for which anthropogenic food augmentation may alter disease dynamics via changes in intraspecific aggression. This research sheds light on ways that behavior can influence and respond to disease that are often overlooked in disease ecology.
- Biotic and abiotic mechanisms shaping multi-species interactionsMaynard, Lauren Danielle (Virginia Tech, 2022-12-20)Interactions are important drivers of selection and community structure, which makes the study of multi-species interactions critical for understanding the ecology and evolution of organisms. This dissertation includes four data chapters that examine the biotic and abiotic mechanisms that shape multi-species interactions in both tropical and temperate ecosystems. The first three data chapters (Chapters 2–4) were completed within a Neotropical rainforest in Costa Rica and focus on one plant genus, Piper (Piperaceae). The final data chapter (Chapter 5) was conducted within a working landscape of soybean (Glycine max) fields in eastern Maryland, USA. In Chapter 2, I explore intra- and inter-specific dietary niche partitioning of Piper fruits among three frugivorous bats, illustrating the importance of fine-scale mechanisms that facilitate species coexistence and influence plant–animal interactions. In Chapter 3, I demonstrate how the chemical ecology of a Neotropical shrub, Piper sancti-felicis, shapes fruit interactions with antagonists (fruit fungi) and mutualists (frugivorous bats and birds), developing a foundation for understanding evolutionary ecology of plant chemical traits based on phytochemical investment patterns. In Chapter 4, I describe the direct and indirect impacts of elevated temperature and CO2 concentration on the plant traits and interactions in Piper generalense, improving our understanding of the effects of climate change on a Neotropical plant–herbivore system. In Chapter 5, I explore the biotic (herbivore-induced plant volatiles) and abiotic (fine-scale weather conditions) drivers affecting insectivorous bat foraging in soybean fields in eastern Maryland, providing a pathway to further investigate new strategies for integrated pest management. As a collective work, this dissertation disentangles the nuances of multi-species interactions, exploring foundational mechanisms underlying biodiversity maintenance as well as answering applied questions to address a changing climate and aid sustainable agriculture.
- Birds are not the only ones impacted by guidance to cease bird feedingDayer, Ashley A.; Pototsky, P. Christy; Hall, Richard J.; Hawley, Dana M.; Phillips, Tina B.; Bonter, David N.; Dietsch, Allan M.; Greig, Emma; Hochachka, Wesley M. (Wiley, 2023)1. Humans have a particularly strong connection with birds, driving the enormous popularity of residential bird feeding in much of the world. 2. We conducted a web search to document US state wildlife management agency responses to two recent avian disease outbreaks, finding that 23 agencies made recommendations to cease feeding wild birds in 2021–2022. 3. The psychological benefits of bird feeding for humans are well-documented but often overlooked in management decisions in response to avian disease outbreaks. 4. Likewise, ecological evidence does not necessarily support ceasing bird feeding to reduce the spread of every avian disease. 5. Ecological and social science need to be applied in tandem to ensure that well-intended guidance to cease feeding of birds does not have unintended consequences.
- Brain and Cognitive Consequences of Early-Life Immune System Challenge in a SongbirdCampbell, Simone Alicia (Virginia Tech, 2016-05-17)Cognition, defined as the mechanism by which an animal acquires, processes, stores, and uses information present in the environment, is a trait that is sensitive to developmental conditions. Existing research supports the idea that the ability to develop and maintain cognitive abilities depends on the physiological condition of the individual, which can be influenced by the early environment. Alterations in maternal care, social stress, and malnutrition are some examples of environmental conditions that impact development and resulting cognitive abilities across taxa. The primary goal of this research was to determine whether immune system challenge during the critical song learning period in zebra finches (Taeniopygia guttata) would lead to long term negative impacts on song quality and learning, spatial learning, and neophobia. Immune challenge during this period of development did not produce long term impacts on learning or memory, nor did it lead to any changes in neophobic responses. However, birds that were hatched later in a clutch performed better on the motoric and spatial tasks, and were less neophobic. Future research in zebra finches that can describe the variation in song attributes as a function of hatching order would be a useful first step in determining a mechanistic link between hatch order and song learning outcomes.
- Chromosomal Evolution of Malaria VectorsPeery, Ashley Nicole (Virginia Tech, 2016-07-01)International malaria control initiatives such as the Roll Back Malaria Initiative (RBM) and the Medicines for Malaria Venture (MMV) mobilize resources and spur research aimed at vector control as well as the treatment and eventual eradication of the disease. These efforts have managed to reduce incidence of malaria by an estimated 37% worldwide since 2000. However, despite the promising success of control efforts such as these, the World Health Organization reports a staggering 438,000 deaths from malaria in 2015. The continuing high death toll of malaria as well as emerging insecticide and antimalarial drug resistance suggests that while encouraging, success in reducing malaria incidence may be tenuous. Current vector control strategies are often complicated by ecological and behavioral heterogeneity of vector mosquito populations. As an additional obstruction, mosquito genomes are highly plastic as evidenced by the wealth or chromosomal inversions that have occurred in this genus. Chromosomal inversions have been correlated with differences in adaptation to aridity, insecticide resistance, and differences in resting behavior. However, a good understanding of the molecular mechanisms for inversion generation is still lacking. One possible contributor to inversion formation in Anopheles mosquitoes includes repetitive DNA such as transposable elements (TEs), tandem repeats (TRs) and inverted repeats (IRs). This dissertation provides physical maps for two important malaria vectors, An. stephensi and An. albimanus (Ch.2 and Ch. 3) and then applies those maps to the identification of inversion breakpoints in malaria mosquitoes. Repeat content of each chromosomal arm and the molecular characterization of lineage specific breakpoints is also investigated (Ch. 2 and Ch.4). Our study reveals differences in patterns of chromosomal evolution of Anopheles mosquitoes vs. Drosophila. First, mosquito chromosomes tend to shuffle as intact elements via whole arm translocations and do not under fissions or fusions as seen in fruitflies. Second, the mosquito sex chromosome is changing at a much higher rate relative to the autosomes in malaria mosquitoes than in fruit flies. Third, our molecular characterization of inversion breakpoints indicates that TEs and TRs may participate in inversion genesis in an arm specific manner.
- Contrasting Epidemic Histories Reveal Pathogen-Mediated Balancing Selection on Class II MHC Diversity in a Wild SongbirdHawley, Dana M.; Fleischer, Robert C. (PLOS, 2012-01-23)The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.
- Coping with Chronic Infection: The Role of Glucocorticoid Hormones in Mediating Resistance and Tolerance to ParasitesSchoenle, Laura A. (Virginia Tech, 2017-07-10)Parasitic infections are ubiquitous, but the consequences to hosts can vary substantially. Variation in the consequences of infection can be related to individual differences in the use of two parasite defense strategies, resistance and tolerance. Resistance entails reducing parasite burden by removing parasites or restricting parasite reproduction. Tolerance involves minimizing the costs associated with a given parasite burden. Genetic variation, environmental conditions, and life history stage can contribute to variation in resistance and tolerance, but the physiological mechanisms that underlie investment in each strategy are not well understood. I proposed that glucocorticoid hormones, which mediate responses to challenges in the physical and social environment in vertebrates, might alter host investment in resistance and tolerance (Chapter I). Glucocorticoids influence a suite of physiological processes including immune function, resource allocation, and tissue growth, all which could alter resistance and tolerance. Using a combination of observational and experimental studies, I test the hypothesis that glucocorticoids mediate resistance and tolerance to infection in red-winged blackbirds (Agelaius phoeniceus) infected with Haemosporidians, including malaria (Plasmodium) and malaria-like (Haemoproteus and Leucocytozoon) parasites. I performed a medication experiment (Chapter II) to identify the physiological consequences of Haemosporidian infection and explored the relationships between glucocorticoids and parasite resistance and tolerance in both an observational field study and a hormone manipulation experiment (Chapters III and IV). Medication treatment effectively reduced Plasmodium burden, increased hematocrit and hemoglobin, and reduced the rate of red blood cell production (Chapter II). In an observational field study (Chapter III), red-winged blackbirds with higher plasma glucocorticoid concentrations maintained higher hematocrit than expected for their parasite burdens, suggesting a positive association between glucocorticoids and tolerance. In this study, I found no support for a relationship between glucocorticoids and resistance. However, experimental elevation of glucocorticoids (Chapter IV) yielded nearly opposite results: the higher of two doses of glucocorticoids increased Plasmodium burdens and caused a decrease in body mass with increasing parasite burden, indicative of a decrease in tolerance. I discuss possible causes of the differences in our observational and experimental studies and the implications of my work for future studies of individual variation in parasite tolerance (Chapter V).
- Determining the Pathogenesis and Enzootic Transmission of Usutu VirusKuchinsky, Sarah (Virginia Tech, 2022-09-02)Usutu virus (USUV) is an emerging zoonotic virus within the Flaviviridae family that can cause neurological disease in humans and wild birds. USUV is maintained in an enzootic cycle between wild birds, primarily passerine species, and ornithophilic mosquitoes, predominantly Culex spp. mosquitoes. Since its first isolation in 1959 in South Africa, USUV has spread throughout sub-Saharan Africa and Europe. Its emergence into Europe was marked by large die-offs, or epizootics, of the Eurasian blackbird (Turdus merula), as well as an increase in human cases. This dissertation sought to understand whether USUV has evolved to become more pathogenic in humans or transmissible in birds. We compared the pathogenesis of five different USUV isolates, four recent isolates: Spain 2009, Netherlands 2016, Senegal 2003, Uganda 2012, and South Africa 1959, in an interferon α/β receptor knockout (Ifnar-/-) mouse model. We observed significant mortality, high viral levels in serum and tissues in all USUV strains except for the Netherlands 2016 strain. Eighteen non-synonymous mutations were identified throughout the genome of Netherlands 2016 strain compared to the other USUV isolates. To further understand USUV infection in wild birds, we developed a physiologically relevant model of infection using juvenile chickens. In juvenile chickens, we found that the European strains were characterized by more pathogenesis and higher viral titers in tissues compared to the African strains. This work established the first viremic bird model of USUV infection. Passerine birds have been suggested to be important for USUV maintenance, however a species competent for transmission has not been identified. We first determined that wild-caught house sparrows (Passer domesticus) and Culex quinquefasciatus mosquitoes were susceptible to Netherlands 2016 and Uganda 2012 USUV strains. Following an infectious feed to assess enzootic transmission, house sparrows were able to transmit both USUV strains to Cx. quinquefasciatus mosquitoes, with the Netherlands 2016 strain being more infectious compared to the Uganda 2012 strain. The collection of these chapters provides great insights on the pathogenesis of distinct USUV strains, disease presentation in birds, and enzootic transmssion of USUV. Additionally, they indicate that USUV emergence in the United States is entirely feasible.
- Development and validation of a house finch interleukin-1β (HfIL-1β) ELISA systemKim, Sungwon; Park, Myeongseon; Leon, Ariel E.; Adelman, James S.; Hawley, Dana M.; Dalloul, Rami A. (2017-08-30)Background A unique clade of the bacterium Mycoplasma gallisepticum (MG), which causes chronic respiratory disease in poultry, has resulted in annual epidemics of conjunctivitis in North American house finches since the 1990s. Currently, few immunological tools have been validated for this songbird species. Interleukin-1β (IL-1β) is a prototypic multifunctional cytokine and can affect almost every cell type during Mycoplasma infection. The overall goal of this study was to develop and validate a direct ELISA assay for house finch IL-1β (HfIL-1β) using a cross-reactive chicken antibody. Methods A direct ELISA approach was used to develop this system using two different coating methods, carbonate and dehydration. In both methods, antigens (recombinant HfIL-1b or house finch plasma) were serially diluted in carbonate-bicarbonate coating buffer and either incubated at 4 °C overnight or at 60 °C on a heating block for 2 hr. To generate the standard curve, rHfIL-1b protein was serially diluted at 0, 3, 6, 9, 12, 15, 18, 21, and 24 ng/mL. Following blocking and washing, anti-chicken IL-1b polyclonal antibody was added, plates were later incubated with detecting antibodies, and reactions developed with tetramethylbenzidine solution. Results A commercially available anti-chicken IL-1β (ChIL-1β) polyclonal antibody (pAb) cross-reacted with house finch plasma IL-1β as well as bacterially expressed recombinant house finch IL-1β (rHfIL-1β) in immunoblotting assays. In a direct ELISA system, rHfIL-1β could not be detected by an anti-ChIL-1β pAb when the antigen was coated with carbonate-bicarbonate buffer at 4°C overnight. However, rHfIL-1β was detected by the anti-ChIL-1β pAb when the antigen was coated using a dehydration method by heat (60°C). Using the developed direct ELISA for HfIL-1β with commercial anti-ChIL-1β pAb, we were able to measure plasma IL-1β levels from house finches. Conclusions Based on high amino acid sequence homology, we hypothesized and demonstrated cross-reactivity of anti-ChIL-1β pAb and HfIL-1β. Then, we developed and validated a direct ELISA system for HfIL-1β using a commercial anti-ChIL-1β pAb by measuring plasma HfIL-1β in house finches.
- Differing house Finch cytokine expression responses to Original and evolved isolates of Mycoplasma gallisepticumVinkler, Michal; Leon, Ariel E.; Kirkpatrick, Laila T.; Dalloul, Rami A.; Hawley, Dana M. (Frontiers, 2018-01-22)The recent emergence of the poultry bacterial pathogen Mycoplasma gallisepticum (MG) in free-living house finches (Haemorhous mexicanus), which causes mycoplasmal conjunctivitis in this passerine bird species, resulted in a rapid coevolutionary arms-race between MG and its novel avian host. Despite extensive research on the ecological and evolutionary dynamics of this host–pathogen system over the past two decades, the immunological responses of house finches to MG infection remain poorly understood. We developed seven new probe-based one-step quantitative reverse transcription polymerase chain reaction assays to investigate mRNA expression of house finch cytokine genes (IL1B, IL6, IL10, IL18, TGFB2, TNFSF15, and CXCLi2, syn. IL8L). These assays were then used to describe cytokine transcription profiles in a panel of 15 house finch tissues collected at three distinct time points during MG infection. Based on initial screening that indicated strong pro-inflammatory cytokine expression during MG infection at the periorbital sites in particular, we selected two key house finch tissues for further characterization: the nictitating membrane, i.e., the internal eyelid in direct contact with MG, and the Harderian gland, the secondary lymphoid tissue responsible for regulation of periorbital immunity. We characterized cytokine responses in these two tissues for 60 house finches experimentally inoculated either with media alone (sham) or one of two MG isolates: the earliest known pathogen isolate from house finches (VA1994) or an evolutionarily more derived isolate collected in 2006 (NC2006), which is known to be more virulent. We show that the more derived and virulent isolate NC2006, relative to VA1994, triggers stronger local inflammatory cytokine signaling, with peak cytokine expression generally occurring 3–6 days following MG inoculation. We also found that the extent of pro-inflammatory interleukin 1 beta signaling was correlated with conjunctival MG loads and the extent of clinical signs of conjunctivitis, the main pathological effect of MG in house finches. These results suggest that the pathogenicity caused by MG infection in house finches is largely mediated by host pro-inflammatory immune responses, with important implications for the dynamics of host–pathogen coevolution.
- Do not feed the wildlife: associations between garbage use, aggression, and disease in banded mongooses (Mungos Mungo)Flint, Bonnie Fairbanks; Hawley, Dana M.; Alexander, Kathleen A. (Wiley, 2016-07-25)Urbanization and other human modifications of the landscape may indirectly affect disease dynamics by altering host behavior in ways that influence pathogen transmission. Few opportunities arise to investigate behaviorally mediated effects of human habitat modification in natural host–pathogen systems, but we provide a potential example of this phenomenon in banded mongooses (Mungos mungo), a social mammal. Our banded mongoose study population in Botswana is endemically infected with a novel Mycobacterium tuberculosis complex pathogen, M. mungi, that primarily invades the mongoose host through the nasal planum and breaks in the skin. In this system, several study troops have access to human garbage sites and other modified landscapes for foraging. Banded mongooses in our study site (N = 4 troops, ~130 individuals) had significantly higher within-troop aggression levels when foraging in garbage compared to other foraging habitats. Second, monthly rates of aggression were a significant predictor of monthly number of injuries in troops. Finally, injured individuals had a 75% incidence of clinical tuberculosis (TB) compared to a 0% incidence in visibly uninjured mongooses during the study period. Our data suggest that mongoose troops that forage in garbage may be at greater risk of acquiring TB by incurring injuries that may allow for pathogen invasion. Our study suggests the need to consider the indirect effects of garbage on behavior and wildlife health when developing waste management approaches in human-modified areas.
- Effects of Bird Feeder Density on the Behavior and Ecology of a Feeder-Dependent Songbird: Patterns and Implications for Disease TransmissionAberle, Matthew A. (Virginia Tech, 2018-09-18)Anthropogenic resource provisioning of wildlife has increasingly been hypothesized to alter pathogen spread. Although bird feeding is the most widespread form of intentional wildlife provisioning, we know relatively little about how the degree of anthropogenic feeding at a site impacts wild birds in ways relevant to disease transmission. We manipulated the density of bird feeders (low versus high) available at otherwise similar sites and tracked the local abundance, body condition (scaled-mass index), feeding behavior, and movement across the landscape in wild house finches (Haemorhous mexicanus), a feeder-dependent species subject to outbreaks of a contagious pathogen commonly spread at feeders. The local abundance of house finches was significantly higher at sites with high feeder density but, surprisingly, finches at high-density feeder sites had poorer body condition than those at low-density sites. Behaviorally, birds at high-density feeder sites had longer average feeding bouts and spent more time per day on feeders than birds at low-density feeder sites. Further, birds first recorded at low-density feeder sites were more likely to move to a neighboring high-density feeder site than vice versa. Overall, because local abundance and time spent on feeders have been linked with the risk of disease outbreaks in this species, effects of bird feeder density on both traits may, in turn, influence disease dynamics in house finches. Our results suggest that heterogeneity in the density of bird feeders can have diverse effects on wild birds, with potential consequences for disease transmission.
- Experimental logging alters the abundance and community composition of ovipositing mosquitoes in the southern AppalachiansHopkins, M. Camille; Thomason, Courtney A.; Brown, Bryan L.; Kirkpatrick, Laila T.; Paulson, Sally L.; Hawley, Dana M. (2018-08)1. The loss of intact forest via logging can influence vector-borne disease dynamics in part by altering the abundance or diversity of mosquito species. Using an experimental field approach, we characterised how two types of logging (clearcut and repeat-entry shelterwood) affected temperate forest mosquito abundance and diversity in southwestern Virginia. 2.From May to September in 2008-2010, infusion-baited gravid traps were used to collect ovipositing female mosquitoes across experimental forest plots that varied in logging treatment. Of the 29680 collected adult female mosquitoes, the three dominant taxa captured were Aedes triseriatus (55%), Aedes japonicus (21%), and Culex pipiens/restuans (20%). 3. Logging treatment had a significant effect on the overall number of female mosquitoes caught per trap night, with lower average abundance of females on both logged treatments relative to two types of unlogged, control plots. When the three most abundant mosquito species were examined separately, logging treatment significantly influenced the abundance of both Aedes species, but did not significantly affect C. pipiens/restuans abundance. 4. Logging treatment did not influence the richness or diversity of mosquito species captured in gravid traps. However, logging treatment significantly altered the multivariate community composition of captured mosquitoes, an effect probably mediated by differential species-specific impacts of logging on abundance. 5. Overall, the results of the present study suggest that the risk of arboviruses transmitted by container-breeding Aedes species may be lower following a logging event in Appalachian forests because of reduced A. japonicus and A. triseriatus abundance with logging.
- Exposure heterogeneity, host immunity and virulence evolution in a wild bird-bacterium systemLeon, Ariel Elizabeth (Virginia Tech, 2019-06-25)Immunological heterogeneity is the norm in most free-living vertebrate populations, creating a diverse and challenging landscape for pathogens to replicate and transmit. This dissertation work sought to determine sources of immunological heterogeneity, as well as the consequences of this heterogeneity on pathogen fitness and evolution. A major source of heterogeneity in free-living host populations is the degree of exposure to a pathogen, as well as a host's history of exposure to a pathogen, which can create variation in standing immunity. We sought to determine the role of exposure heterogeneity on host susceptibility and immunity to secondary infection, and the influence of this heterogeneity on pathogen fitness and virulence evolution in a wild bird-bacterium system. We first determined that exposure level has a significant effect on host susceptibility to infection, severity of disease and infection, as well as immunity produced to secondary infection. Subsequently, we tested whether exposure history, and the immunity formed from this previous exposure, altered the within-host fitness advantage to virulent pathogens. We determined that previous low-level repeat exposure, which wild hosts likely encounter while foraging, produces a within-host environment which greatly favors more virulent pathogens. While within-host processes are vital for understanding and interpreting the evolutionary pressures on a pathogen, the ultimate metric of pathogen fitness is transmission. We therefore tested whether exposure history altered the transmission potential of a host and whether prior host exposure selected for more virulent pathogens. The transmission potential of a host significantly decreased with previous exposure, and high levels of previous exposure selected for more virulent pathogens. While we anticipated selection to be strongest at low-levels of exposure based on our previous results, we found here that high doses of prior exposure resulted in the strongest transmission advantage to virulence. This study also provided insight into the nuanced nature of transmission, which our results indicate is determined both by the degree of within-host pathogen replication as well as host disease severity. Together, our findings underscore the importance of exposure level and exposure history in natural populations in determining susceptibility, immunity and pathogen virulence evolution.
- Exposure to residual concentrations of elements from a remediated coal fly ash spill does not adversely influence stress and immune responses of nestling tree swallowsBeck, Michelle L.; Hopkins, William A.; Hallagan, John J.; Jackson, Brian P.; Hawley, Dana M. (Oxford University Press, 2014)Anthropogenic activities often produce pollutants that can affect the physiology, growth and reproductive success of wildlife. Many metals and trace elements play important roles in physiological processes, and exposure to even moderately elevated concentrations of essential and non-essential elements could have subtle effects on physiology, particularly during development. We examined the effects of exposure to a number of elements from a coal fly ash spill that occurred in December 2008 and has since been remediated on the stress and immune responses of nestling tree swallows. We found that nestlings at the site of the spill had significantly greater blood concentrations of Cu, Hg, Se and Zn in 2011, but greater concentrations only of Se in 2012, in comparison to reference colonies. The concentrations of elements were below levels of significant toxicological concern in both years. In 2011, we found no relationship between exposure to elements associated with the spill and basal or stress-induced corticosterone concentrations in nestlings. In 2012, we found that Se exposure was not associated with cellmediated immunity based on the response to phytohaemagglutinin injection. However, the bactericidal capacity of nestling plasma had a positive but weak association with blood Se concentrations, and this association was stronger at the spill site. Our results indicate that exposure to these low concentrations of elements had few effects on nestling endocrine and immune physiology. The long-term health consequences of low-level exposure to elements and of exposure to greater element concentrations in avian species require additional study.
- «
- 1 (current)
- 2
- 3
- »