Browsing by Author "Ismail, Ahmed"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Diversity in blueberry genotypes and developmental stages enables discrepancy in the bioactive compounds, metabolites, and cytotoxicityDas, Protiva Rani; Darwish, Ahmed G.; Ismail, Ahmed; Haikal, Amr M.; Gajjar, Pranavkumar; Balasubramani, Subramani Paranthaman; Sheikh, Mehboob B.; Tsolova, Violeta; Soliman, Karam F. A.; Sherif, Sherif M.; El-Sharkawy, Islam (Elsevier, 2022-04-16)Eight blueberry cultivars at three developmental stages were investigated for metabolite profiling, antioxidant, and anticancer activities. Cultivars- and developmental stages-variations were determined in total phenolic, flavonoid, DPPH, and FRAP antioxidant assays. The anticancer capacity was equal against A549, HepG2, and Caco-2 cancer cells, whereas the inhibition rate was dose-, incubation period-, cultivar-, and developmental stages-dependent. The untargeted metabolite profiling by UPLC-TOF-MS analysis of two contrast cultivars, 'Vernon' and 'Star', throughout the developmental stages revealed 328 metabolites; the majority of them were amino acids, organic acids, and flavonoids. The multivariate statistical analysis identified five metabolites, including quinic acid, methyl succinic acid, chlorogenic acid, oxoadipic acid, and malic acid, with positively higher correlations with all anticancer activities. This comprehensive database of blueberry metabolites along with anticancer activities could be targeted as natural anticancer potentials. This study would be of great value for food, nutraceutical, and pharmaceutical industries as well as plant biotechnologists.
- Physiological Comparison of Two Salt-Excluder Hybrid Grapevine Rootstocks under Salinity Reveals Different Adaptation QualitiesGajjar, Pranavkumar; Ismail, Ahmed; Islam, Tabibul; Darwish, Ahmed G.; Moniruzzaman, Md; Abuslima, Eman; Dawood, Ahmed S.; El-Saady, Abdelkareem M.; Tsolova, Violeta; El-Kereamy, Ashraf; Nick, Peter; Sherif, Sherif M.; Abazinge, Michael D.; El-Sharkawy, Islam (MDPI, 2023-09-13)Like other plant stresses, salinity is a central agricultural problem, mainly in arid or semi-arid regions. Therefore, salt-adapted plants have evolved several adaptation strategies to counteract salt-related events, such as photosynthesis inhibition, metabolic toxicity, and reactive oxygen species (ROS) formation. European grapes are usually grafted onto salt-tolerant rootstocks as a cultivation practice to alleviate salinity-dependent damage. In the current study, two grape rootstocks, 140 Ruggeri (RUG) and Millardet et de Grasset 420A (MGT), were utilized to evaluate the diversity of their salinity adaptation strategies. The results showed that RUG is able to maintain higher levels of the photosynthetic pigments (Chl-T, Chl-a, and Chl-b) under salt stress, and hence accumulates higher levels of total soluble sugars (TSS), monosaccharides, and disaccharides compared with the MGT rootstock. Moreover, it was revealed that the RUG rootstock maintains and/or increases the enzymatic activities of catalase, GPX, and SOD under salinity, giving it a more efficient ROS detoxification machinery under stress.
- Salt Stress Signals on Demand: Cellular Events in the Right ContextIsmail, Ahmed; El-Sharkawy, Islam; Sherif, Sherif M. (MDPI, 2020-05-30)Plant stress is a real dilemma; it puzzles plant biologists and is a global problem that negatively affects people’s daily lives. Of particular interest is salinity, because it represents one of the major water-related stress types. We aimed to determine the signals that guide the cellular-related events where various adaptation mechanisms cross-talk to cope with salinity-related water stress in plants. In an attempt to unravel these mechanisms and introduce cellular events in the right context, we expansively discussed how salt-related signals are sensed, with particular emphasis on aquaporins, nonselective cation channels (NSCCs), and glycosyl inositol phosphorylceramide (GIPC). We also elaborated on the critical role Ca2+, H+, and ROS in mediating signal transduction pathways associated with the response and tolerance to salt stress. In addition, the fragmentary results from the literature were compiled to develop a harmonized, informational, and contemplative model that is intended to improve our perception of these adaptative mechanisms and set a common platform for plant biologists to identify intriguing research questions in this area.
- Transcriptome Profiling of a Salt Excluder Hybrid Grapevine Rootstock ‘Ruggeri’ throughout SalinityGajjar, Pranavkumar; Ismail, Ahmed; Islam, Tabibul; Moniruzzaman, Md; Darwish, Ahmed G.; Dawood, Ahmed S.; Mohamed, Ahmed G.; Haikal, Amr M.; El-Saady, Abdelkareem M.; El-Kereamy, Ashraf; Sherif, Sherif M.; Abazinge, Michael D.; Kambiranda, Devaiah; El-Sharkawy, Islam (MDPI, 2024-03-14)Salinity is one of the substantial threats to plant productivity and could be escorted by other stresses such as heat and drought. It impairs critical biological processes, such as photosynthesis, energy, and water/nutrient acquisition, ultimately leading to cell death when stress intensity becomes uncured. Therefore, plants deploy several proper processes to overcome such hostile circumstances. Grapevine is one of the most important crops worldwide that is relatively salt-tolerant and preferentially cultivated in hot and semi-arid areas. One of the most applicable strategies for sustainable viticulture is using salt-tolerant rootstock such as Ruggeri (RUG). The rootstock showed efficient capacity of photosynthesis, ROS detoxification, and carbohydrate accumulation under salinity. The current study utilized the transcriptome profiling approach to identify the molecular events of RUG throughout a regime of salt stress followed by a recovery procedure. The data showed progressive changes in the transcriptome profiling throughout salinity, underpinning the involvement of a large number of genes in transcriptional reprogramming during stress. Our results established a considerable enrichment of the biological process GO-terms related to salinity adaptation, such as signaling, hormones, photosynthesis, carbohydrates, and ROS homeostasis. Among the battery of molecular/cellular responses launched upon salinity, ROS homeostasis plays the central role of salt adaptation.
- Untargeted Metabolomics and Antioxidant Capacities of Muscadine Grape Genotypes during Berry DevelopmentDarwish, Ahmed G.; Das, Protiva Rani; Ismail, Ahmed; Gajjar, Pranavkumar; Balasubramani, Subramani Paranthaman; Sheikh, Mehboob B.; Tsolova, Violeta; Sherif, Sherif M.; El-Sharkawy, Islam (MDPI, 2021-06-04)Three muscadine grape genotypes (Muscadinia rotundifolia (Michx.) Small) were evaluated for their metabolite profiling and antioxidant activities at different berry developmental stages. A total of 329 metabolites were identified using UPLC-TOF-MS analysis (Ultimate 3000LC combined with Q Exactive MS and screened with ESI-MS) in muscadine genotypes throughout different developmental stages. Untargeted metabolomics study revealed the dominant chemical groups as amino acids, organic acids, sugars, and phenolics. Principal component analysis indicated that developmental stages rather than genotypes could explain the variations among the metabolic profiles of muscadine berries. For instance, catechin, epicatechin-3-gallate, and gallic acid were more accumulated in ripening seeds (RIP-S). However, tartaric acid and malonic acid were more abundant during the fruit-set (FS) stage, and malic acid was more abundant in the veraison (V) stage. The variable importance in the projection (VIP > 0.5) in partial least-squares–discriminant analysis described 27 biomarker compounds, representing the muscadine berry metabolome profiles. A heatmap of Pearson’s correlation analysis between the 27 biomarker compounds and antioxidant activities was able to identify nine antioxidant determinants; among them, gallic acid, 4-acetamidobutanoic acid, trehalose, catechine, and epicatechin-3-gallate displayed the highest correlations with different types of antioxidant activities. For instance, DPPH and FRAP conferred a similar antioxidant activity pattern and were highly correlated with gallic acid and 4-acetamidobutanoic acid. This comprehensive study of the metabolomics and antioxidant activities of muscadine berries at different developmental stages is of great reference value for the plant, food, pharmaceutical, and nutraceutical sectors.