Browsing by Author "Jain, Sparsh"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Investigation of Sleep Neural Dynamics in Intracranial EEG PatientsJain, Sparsh (Virginia Tech, 2021-06-01)Intracranial electroencephalography (iEEG) provides superior diagnostic and research benefits over non-invasive EEG in terms of spatial resolution and the level of electrophysiological detail. Post-operative Computed Tomography (CT) scans provide the precision in electrode localization required for clinical purposes; however, to use this data for basic sleep research the challenge lies in identifying the precise locations of the implanted electrodes’ recording sites in terms of neuroanatomical regions as well as reliable scoring of their sleep data without the aid of facial electrodes. While existing methods can be combined to determine their exact locations in three-dimensional space, they fail to identify the functionally relevant gray matter areas that lie closest to them, especially if the points lie in the white matter. We introduce an iterative sphere inflation algorithm in conjunction with a unified pipeline to detect the exact as well as nearest regions of interest for these recording sites. Next, for sleep scoring purposes, we establish differences observed in alpha band activity between wakefulness and rapid eye movement (REM) sleep in frontal and temporal regions of iEEG patients. Lastly, we implement an automated sleep scoring method relying on the variations in alpha and delta bands power during sleep which can be applied to large sets of iEEG data recorded without accompanying electrooculogram (EOG) and electromyogram (EMG) electrodes available across labs for use in studies pertaining to neural dynamics during sleep.
- Real-time Risk Prediction at Signalized Intersections Using a Graph Neural NetworkSonth, Akash; Sarkar, Abhijit; Jain, Sparsh; Bhagat, Hirva; Doerzaph, Zachary R. (Safe-D University Transportation Center, 2023-12)Intersection-related traffic crashes and fatalities are major concerns for road safety. This project aimed to understand the major causes of conflicts at intersections by studying the intricate interplay between roadway agents. The approach involved using the current traffic camera systems to automatically process traffic video data. As manual annotation of video datasets is a very labor-intensive and costly process, this research leveraged modern computer vision algorithms to automatically process these videos and retrieve kinematic behavior of the traffic actors. Results demonstrated how traffic actors and road segments can be modeled independently via graphs and how they can be integrated into a framework that can model traffic systems. The team used a graph neural network to model (a) the interaction of all the roadway agents at any given instance and (b) their role in road safety, both individually and as a composite system. The model reports a near-real-time risk score for a traffic scene. The study concludes with a presentation of a new drone-based trajectory dataset to accelerate research in intersection safety.
- Unsupervised Multitaper Spectral Method for Identifying REM Sleep in Intracranial EEG Recordings Lacking EOG/EMG DataLepage, Kyle Q.; Jain, Sparsh; Kvavilashvili, Andrew; Witcher, Mark; Vijayan, Sujith (MDPI, 2023-08-25)A large number of human intracranial EEG (iEEG) recordings have been collected for clinical purposes, in institutions all over the world, but the vast majority of these are unaccompanied by EOG and EMG recordings which are required to separate Wake episodes from REM sleep using accepted methods. In order to make full use of this extremely valuable data, an accurate method of classifying sleep from iEEG recordings alone is required. Existing methods of sleep scoring using only iEEG recordings accurately classify all stages of sleep, with the exception that wake (W) and rapid-eye movement (REM) sleep are not well distinguished. A novel multitaper (Wake vs. REM) alpha-rhythm classifier is developed by generalizing K-means clustering for use with multitaper spectral eigencoefficients. The performance of this unsupervised method is assessed on eight subjects exhibiting normal sleep architecture in a hold-out analysis and is compared against a classical power detector. The proposed multitaper classifier correctly identifies 36±6 min of REM in one night of recorded sleep, while incorrectly labeling less than 10% of all labeled 30 s epochs for all but one subject (human rater reliability is estimated to be near 80%), and outperforms the equivalent statistical-power classical test. Hold-out analysis indicates that when using one night’s worth of data, an accurate generalization of the method on new data is likely. For the purpose of studying sleep, the introduced multitaper alpha-rhythm classifier further paves the way to making available a large quantity of otherwise unusable IEEG data.