Browsing by Author "Jen, C. M."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experimentsAnkowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, C. M.; Mariani, Camillo; Meloni, David; Vagnoni, E. (American Physical Society, 2015-10-22)To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ &8594; νμ disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an Ο(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. On the other hand, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.
- Convolutional neural networks applied to neutrino events in a liquid argon time projection chamberAcciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, Leslie; Caratelli, D.; Carls, B.; Fernandez, R. C.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, Janet M.; Convery, M.; Crespo-Anadon, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Golapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, Glenn A.; James, C.; de Vries, J. J.; Jen, C. M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, Georgia S.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, Camillo; Marshall, J.; Caicedo, D. A. M.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. R.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, Marjorie Hansen; Sinclair, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, Joshua; St John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y. T.; Tufanli, S.; Usher, T.; de Water, R. G. V.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, Geralyn P.; Zennamo, J.; Zhang, C. (IOP, 2017-03-01)We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.
- Design and construction of the MicroBooNE detectorAcciarri, R.; Adams, C.; An, R.; Aparicio, A.; Aponte, S.; Asaadi, J.; Auger, M.; Ayoub, N.; Bagby, L.; Baller, B.; Barger, R.; Barr, G.; Bass, M.; Bay, F.; Biery, K.; Bishai, M.; Blake, A.; Bocean, V.; Boehnlein, D.; Bogert, V. D.; Bolton, T.; Bugel, L.; Callahan, C.; Camilleri, Leslie; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chappa, S.; Chen, H.; Chen, K.; Chi, C. Y.; Chiu, C. S.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, Janet M.; Convery, M.; Cornele, J.; Cowan, P.; Crespo-Anadon, J. I.; Crutcher, G.; Darve, C.; Davis, R.; Del Tutto, M.; Devitt, D.; Duffin, S.; Dytman, S.; Eberly, B.; Ereditato, A.; Erickson, D.; Escudero Sanchez, L.; Esquivel, J.; Farooq, S.; Farrell, J.; Featherston, D.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Genty, V.; Geynisman, M.; Goeldi, D.; Goff, B.; Golapinni, S.; Graf, N.; Gramellini, E.; Green, J.; Greene, A.; Greenlee, H.; Griffin, T.; Grosso, R.; Guenette, R.; Hackenburg, A.; Haenni, R.; Hamilton, P.; Healey, P.; Hen, O.; Henderson, E.; Hewes, J.; Hill, C.; Hill, K.; Himes, L.; Ho, J.; Horton-Smith, Glenn A.; Huffman, D.; Ignarra, C. M.; James, C.; James, E.; Jan de Vries, J.; Jaskierny, W.; Jen, C. M.; Jiang, L.; Johnson, B.; Johnson, M.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kalousis, L. N.; Karagiorgi, Georgia S.; Katori, T.; Kellogg, P.; Ketchum, W.; Kilmer, J.; King, B.; Kirby, B.; Kirby, M.; Klein, E.; Kobilarcik, T.; Kreslo, I.; Krull, R.; Kubinski, R.; Lange, G.; Lanni, F.; Lathrop, A.; Laube, A.; Leeg, W. M.; Li, Y.; Lissauer, D.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Lukhanin, G.; Luethi, M.; Lundberg, B.; Luo, X.; Mahler, G.; Majoros, I.; Makowiecki, D.; Marchionni, A.; Mariani, Camillo; Markley, D.; Marshall, J.; Martinez Caicedo, D. A.; McDonald, K. T.; McKee, D.; McLean, A.; Mead, J.; Meddage, V.; Miceli, T.; Mills, G. B.; Miner, W.; Moon, J.; Mooney, M.; Moore, C. D.; Moss, Z.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Norris, B.; Norton, N.; Nowak, J.; O'Boyle, M.; Olszanowski, T.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Pelkey, R.; Phipps, M.; Pordes, S.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Rameika, R.; Rebel, B.; Rechenmacher, R.; Rescia, S.; Rochester, L.; von Rohr, C. R.; Ruga, A.; Russell, B.; Sanders, R.; Sands, W. R.; Sarychev, M.; Schmitz, D. W.; Schukraft, A.; Scott, R.; Seligman, W.; Shaevitz, Marjorie Hansen; Shoun, M.; Sinclair, J.; Sippach, W.; Smidt, T.; Smith, A.; Snider, E. L.; Soderberg, M.; Solano-Gonzalez, M.; Söldner-Rembold, S.; Soleti, S. R.; Sondericker, J.; Spentzouris, P.; Spitz, Joshua; St John, J.; Strauss, T.; Sutton, K.; Szelc, A. M.; Taheri, K.; Tagg, N.; Tatum, K.; Teng, J.; Terao, K.; Thomson, M.; Thorn, C.; Tiliman, J.; Toups, M.; Tsai, Y. T.; Tufanli, S.; Usher, T.; Utes, M.; Van de Water, R. G.; Vendetta, C.; Vergani, S.; Voirin, E.; Voirin, J.; Viren, B.; Watkins, P.; Weber, M.; Wester, T.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Wu, K. C.; Yang, T.; Yu, B.; Zeller, Geralyn P.; Zennamo, J.; Zhang, C.; Zuckerbrot, M. (IOP, 2017-02-01)This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported.
- The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the UniverseCollaboration, LBNE; Adams, C.; Adams, D. A.; Akiri, T.; Alion, T.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Anghel, I.; Anjos, JCCD; Antonello, M.; Arrieta-Diaz, E.; Artuso, M.; Asaadi, J.; Bai, X.; Baibussinov, B.; Baird, M.; Balantekin, A. B.; Baller, B.; Baptista, B.; Barker, D.; Barker, G.; Barletta, W. A.; Barr, G.; Bartoszek, L.; Bashyal, A.; Bass, M.; Bellini, V.; Benetti, P. A.; Berger, B. E.; Bergevin, M.; Berman, E.; Berns, H. G.; Bernstein, A.; Bernstein, R.; Bhandari, B.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Bishai, M.; Blake, A.; Blaszczyk, F.; Blaufuss, E.; Bleakley, B.; Blucher, E.; Blusk, S.; Bocean, V.; Boffelli, F.; Boissevain, J. G.; Bolton, T.; Bonesini, M.; Boyd, S.; Brandt, A.; Breedon, R.; Bromberg, C.; Brown, R.; Brunetti, G.; Buchanan, N.; Bugg, B.; Busenitz, J.; Calligarich, E.; Camilleri, Leslie; Carminati, G.; Carr, Rachel E.; Castromonte, C.; Cavanna, F.; Centro, S.; Chen, A.; Chen, H.; Chen, K.; Cherdack, D.; Chi, C. Y.; Childress, S.; Choudhary, B. C.; Christodoulou, G.; Christofferson, C. A.; Church, E.; Cline, D.; Coan, T.; Cocco, A.; Coelho, J.; Coleman, S.; Conrad, Janet M.; Convery, M.; Corey, R.; Corwin, L.; Cranshaw, J.; Cronin-Hennessy, D.; Curioni, A.; Motta, H. D.; Davenne, T.; Davies, G. S.; Dazeley, S.; De, K.; Gouvea, A. D.; Jong, J K. D.; Demuth, D.; Densham, C.; Diwan, M.; Djurcic, Zelimir; Dolfini, R.; Dolph, J.; Drake, G.; Dye, S.; Dyuang, H.; Edmunds, D.; Elliott, S.; Elnimr, M.; Eno, S.; Enomoto, S.; Escobar, C. O.; Evans, J.; Falcone, A.; Falk, L.; Farbin, A.; Farnese, C.; Fava, A.; Felde, J.; Fernandes, S.; Ferroni, F.; Feyzi, F.; Fields, L.; Finch, A.; Fitton, M.; Fleming, B.; Fowler, J.; Fox, W.; Friedland, A.; Fuess, S.; Fujikawa, B. K.; Gallagher, H.; Gandhi, R.; Garvey, G. T.; Gehman, V. M.; Geronimo, G. D.; Gibin, D.; Gill, R.; Gomes, R. A.; Goodman, M. C.; Goon, J.; Graf, N.; Graham, M.; Gran, R.; Grant, C.; Grant, N.; Greenlee, H.; Greenler, L.; Grullon, S.; Guardincerri, E.; Guarino, V.; Guarnaccia, E.; Guedes, G. P.; Guenette, R.; Guglielmi, A.; Guzzo, M. M.; Habig, A. T.; Hackenburg, R. W.; Hadavand, H.; Hahn, A.; Haigh, M.; Haines, T.; Handler, T.; Hans, S.; Hartnell, J.; Harton, J.; Hatcher, R.; Hatzikoutelis, A.; Hays, S.; Hazen, E.; Headley, M.; Heavey, A.; Heeger, K.; Heise, J.; Hellauer, R.; Hewes, J.; Himmel, A.; Hogan, M.; Holanda, P.; Holin, A.; Horton-Smith, Glenn A.; Howell, J.; Hurh, P.; Huston, J.; Hylen, J.; Imlay, R.; Insler, J.; Introzzi, G.; Isvan, Z.; Jackson, C.; Jacobsen, J.; Jaffe, D. E.; James, C.; Jen, C. M.; Johnson, M.; Johnson, R.; Johnson, S.; Johnston, W.; Johnstone, J.; Jones, B. J. P.; Jostlein, H.; Junk, T.; Kadel, R.; Kaess, K.; Karagiorgi, Georgia S.; Kaspar, J.; Katori, T.; Kayser, B.; Kearns, E.; Keener, P.; Kemp, E.; Kettell, S. H.; Kirby, M.; Klein, J.; Koizumi, G.; Kopp, S.; Kormos, L.; Kropp, W.; Kudryavtsev, V. A.; Kumar, A.; Kumar, J.; Kutter, T.; Zia, F. L.; Lande, K.; Lane, C.; Lang, K.; Lanni, F.; Lanza, R.; Latorre, T.; Learned, J.; Lee, D.; Lee, K.; Li, Q.; Li, S.; Li, Y.; Li, Z.; Libo, J.; Linden, S.; Ling, J.; Link, Jonathan M.; Littenberg, L.; Liu, H.; Liu, Q.; Liu, T.; Losecco, J.; Louis, W.; Lundberg, B.; Lundin, T.; Lundy, J.; Machado, A. A.; Maesano, C.; Magill, S.; Mahler, G.; Malon, D.; Malys, S.; Mammoliti, F.; Mandal, S. K.; Mann, A.; Mantsch, P.; Marchionni, A.; Marciano, W. J.; Mariani, Camillo; Maricic, Jelena; Marino, A.; Marshak, M.; Marshall, J.; Matsuno, S.; Mauger, C.; Mavrokoridis, K.; Mayer, N.; McCauley, N.; McCluskey, E.; McDonald, K.; McFarland, K. S.; McKee, D.; McKeown, R.; McTaggart, R.; Mehdiyev, R.; Mei, D.; Menegolli, A.; Meng, G.; Meng, Y.; Mertins, D.; Messier, M.; Metcalf, W.; Milincic, R.; Miller, W.; Mills, G.; Mishra, S. R.; Mokhov, N.; Montanari, C.; Montanari, D.; Moore, C.; Morfin, J.; Morgan, B.; Morse, W.; Moss, Z.; Moura, C. A.; Mufson, S.; Muller, D.; Musser, J.; Naples, D.; Napolitano, J.; Newcomer, M.; Nichol, R.; Nicholls, T.; Niner, E.; Norris, B.; Nowak, J.; O'Keeffe, H.; Oliveira, R.; Olson, T.; Page, B.; Pakvasa, S.; Palamara, O.; Paley, J.; Paolone, V.; Papadimitriou, V.; Park, S.; Parsa, Z.; Partyka, K.; Paulos, B.; Pavlovic, Z.; Peeters, S.; Perch, A.; Perkin, J. D.; Petti, R.; Petukhov, A.; Pietropaolo, F.; Plunkett, R.; Polly, C. C.; Pordes, S.; Potekhin, M.; Potenza, R.; Prakash, A.; Prokofiev, O.; Qian, X.; Raaf, J. L.; Radeka, V.; Rakhno, I.; Ramachers, Y. A.; Rameika, R.; Ramsey, J.; Rappoldi, A.; Raselli, G. L.; Ratoff, P.; Ravindra, S.; Rebel, B.; Reichenbacher, J.; Reitzner, D.; Rescia, S.; Richardson, M.; Rielage, K.; Riesselmann, K.; Robinson, M.; Rochester, L.; Ronquest, M.; Rosen, M.; Rossella, M.; Rubbia, C.; Rucinski, R.; Sahijpal, S.; Sahoo, H.; Sala, P.; Salmiera, D.; Samios, N.; Sanchez, Maria Cristina; Scaramelli, A.; Schellman, H.; Schmitt, R.; Schmitz, D.; Schneps, J.; Scholberg, K.; Segreto, E.; Seibert, S.; Sexton-Kennedy, L.; Shaevitz, Marjorie Hansen; Shanahan, P.; Sharma, R.; Shaw, T.; Simos, N.; Singh, V.; Sinnis, G.; Sippach, W.; Skwarnicki, T.; Smy, M.; Sobel, H.; Soderberg, M.; Sondericker, J.; Sondheim, W.; Sousa, A.; Spooner, N. J. C.; Stancari, M.; Stancu, Ion; Stefan, D.; Stefanik, A.; Stewart, J.; Stone, S.; Strait, J.; Strait, M.; Striganov, S.; Sullivan, G.; Sun, Y.; Suter, L.; Svenson, A.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Szydagis, M.; Söldner-Rembold, S.; Talaga, R.; Tamsett, M.; Tariq, S.; Tayloe, R.; Taylor, C.; Taylor, D.; Teymourian, A.; Themann, H.; Thiesse, M.; Thomas, J.; Thompson, L. F.; Thomson, M.; Thorn, C.; Thorpe, M.; Tian, X.; Tiedt, D.; Toki, W.; Tolich, N.; Torti, M.; Toups, M.; Touramanis, C.; Tripathi, M.; Tropin, I.; Tsai, Y. T.; Tull, C.; Tzanov, M.; Urheim, J.; Usman, S.; Vagins, M. R.; Valdiviesso, G. A.; Berg, R. V.; Water, R. V. D.; Gemmeren, P. V.; Varanini, F.; Varner, G.; Vaziri, K.; Velev, G.; Ventura, S.; Vignoli, C.; Viren, B.; Wahl, D.; Waldron, A.; Walter, C. W.; Wang, H.; Wang, W.; Warburton, K.; Warner, D.; Wasserman, R.; Watson, B.; Weber, A.; Wei, W.; Wells, D.; Wetstein, M.; White, A.; White, H.; Whitehead, L.; Whittington, D.; Willhite, J.; Wilson, R. J.; Winslow, L.; Wood, K.; Worcester, E.; Worcester, M.; Xin, T.; Yarritu, K.; Ye, J.; Yeh, M.; Yu, B.; Yu, J.; Yuan, T.; Zani, A.; Zeller, Geralyn P.; Zhang, C.; Zimmerman, E. D.; Zwaska, R. (2014-04-15)The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.
- Measurement of the Spectral Function of 40Ar through the (e, e'p) reactionAnkowski, Artur M.; Beminiwattha, R. S.; Benhar, Omar; Crabb, D. G.; Day, D. B.; Garibaldi, F.; Garvey, G. T.; Gaskell, D.; Giusti, C.; Hansen, O.; Higinbotham, D. W.; Holmes, R.; Jen, C. M.; Jiang, X.; Keller, D.; Keppel, C. E.; Lindgren, R.; Link, Jonathan M.; Liyanage, N.; Mariani, Camillo; Meucci, A.; Mills, G. B.; Myers, L.; Pitt, M. L.; Rondon, O. A.; Sakuda, M.; Sawatzky, B.; Souder, P. A.; Urciuoli, G. M.; Wood, S.; Zhang, J. (2014-07)The interpretation of the signals detected by high precision experiments aimed at measuring neutrino oscillations requires an accurate description of the neutrino-nucleus cross sections. One of the key element of the analysis is the treatment of nuclear effects, which is one of the main sources of systematics for accelerator based experiments such as the Long Baseline Neutrino Experiment (LBNE). A considerable effort is currently being made to develop theoretical models capable of providing a fully quantitative description of the neutrino-nucleus cross sections in the kinematical regime relevant to LBNE. The approach based on nuclear many-body theory and the spectral function formalism has proved very successful in explaining the available electron scattering data in a variety of kinematical conditions. The first step towards its application to the analysis of neutrino data is the derivation of the spectral functions of nuclei employed in neutrino detectors, in particular argon. We propose a measurement of the coincidence (e, e'p) cross section on argon. This data will provide the experimental input indispensable to construct the argon spectral function, thus paving the way for a reliable estimate of the neutrino cross sections. In addition, the analysis of the (e, e'p) data will help a number of theoretical developments, like the description of final-state interactions needed to isolate the initial-state contributions to the observed single-particle peaks, that is also needed for the interpretation of the signal detected in neutrino experiments.