Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

Files

TR Number

Date

2017-03-01

Journal Title

Journal ISSN

Volume Title

Publisher

IOP

Abstract

We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.

Description

Keywords

Technology, Instruments & Instrumentation, Analysis and statistical methods, Particle identification methods, Image filtering, Time projection chambers

Citation