Browsing by Author "Kang, Min Gyu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Invited review: Sensor technologies for real-time monitoring of the rumen environmentHan, Chan Su; Kaur, Upinder; Bai, Huiwen; Dos Reis, Barbara Roqueto; White, Robin R.; Nawrocki, Robert A.; Voyles, Richard M.; Kang, Min Gyu; Priya, Shashank (Elsevier, 2022-08)Quantifying digestive and fermentative processes within the rumen environment has been the subject of decades of research; however, our existing research methodologies preclude time-sensitive and spatially explicit investigation of this system. To better understand the temporal and spatial dynamics of the rumen environment, real-time and in situ monitoring of various chemical and physical parameters in the rumen through implantable microsensor technologies is a practical solution. Moreover, such sensors could contribute to the next generation of precision livestock farming, provided sufficient wireless data networking and computing systems are incorporated. In this review, various microsensor technologies applicable to real-time metabolic monitoring for ruminants are introduced, including the detection of parameters for rumen metabolism, such as and requirements of the sensors are summarized with respect to the selected target parameters. Lastly, future discussed.
- Optical properties of Pb0.52Zr0.48TiO3 nanorod arrays: second harmonic generation and multiphoton carrier dynamicsMudiyanselage, Rathsara R. H. H.; Burton, John; Magill, Brenden A.; McMillan, Kiara; Gagliano, Gabriella; Morral, Ada J.; Kang, Min Gyu; Kang, Han Byul; Priya, Shashank; Stanton, Christopher J.; Khodaparast, Giti A. (2021-07)Nonlinear optical properties of poled and unpoled, lead zirconate-titanate (Pb0.52Zr0.48TiO3) nanorod arrays, grown on Pt-coated Si with similar to 200 nm diameter and similar to 600 nm height, were investigated. Clear signatures of second harmonic generations (SHG), from 490-525 nm (2.38-2.53 eV) at room temperature, were observed. Furthermore, time resolved differential reflectivity measurements were performed to study dynamical properties of photoexcited carriers in the range of 690-1000 nm where multiphoton processes were responsible for the photo-excitations. We compared this excitation scheme, which is sensitive mainly to the surface states, to when the photoexcited energy (similar to 3.1 eV) was close to the band gap of the nanorods. Our results offer promises for employing these nanostructures in nonlinear photonic applications.