Optical properties of Pb0.52Zr0.48TiO3 nanorod arrays: second harmonic generation and multiphoton carrier dynamics


Nonlinear optical properties of poled and unpoled, lead zirconate-titanate (Pb0.52Zr0.48TiO3) nanorod arrays, grown on Pt-coated Si with similar to 200 nm diameter and similar to 600 nm height, were investigated. Clear signatures of second harmonic generations (SHG), from 490-525 nm (2.38-2.53 eV) at room temperature, were observed. Furthermore, time resolved differential reflectivity measurements were performed to study dynamical properties of photoexcited carriers in the range of 690-1000 nm where multiphoton processes were responsible for the photo-excitations. We compared this excitation scheme, which is sensitive mainly to the surface states, to when the photoexcited energy (similar to 3.1 eV) was close to the band gap of the nanorods. Our results offer promises for employing these nanostructures in nonlinear photonic applications.

quantum sensing, PZT, second harmonic generation, nanorods, time resolved spectroscopy, multiferroics