Browsing by Author "Kriz, Ronald D."
Now showing 1 - 20 of 80
Results Per Page
Sort Options
- 3D Visualization of Highway Corridors: The I-77/81 Case Study near Wytheville, VAThota, Pramod Reddy (Virginia Tech, 2002-05-07)The application of Visualization and Simulation technologies to intuitively depict, analyze and execute transportation projects is gaining momentum, as advances in 3-Dimension (3D) Geographic Information Systems (GIS) technologies are rapidly progressing and there is an increased need for public acceptance of transportation projects. This thesis presents a visualization process framework that is applicable to highway corridor visualization, and the I-77/81 Relocation Study Visualization project is discussed along the lines of the visualization framework that has been developed. The changes in the roadway alignment and associated traffic volume and pattern changes will affect the town of Wytheville, both in terms of economy and community development. The goal of the project is to present these visualizations at public participation meetings. Visualizations that have been developed in 2D, 3D, 4D, and virtual reality, will be discussed along with their developmental life cycles and issues affecting their quality.
- Advanced sensing techniques for active structural acoustic controlClark, Robert L. Jr. (Virginia Tech, 1992-02-12)This study presents a basis for the analytical and experimental procedures as well as design techniques required in achieving adaptive structures for active structural acoustic control (ASAC). Test structures studied in this work included a baffled simply supported beam and a baffled simply supported plate which were subjected to a harmonic input disturbance created physically with a shaker and modelled by a point force input. Structural acoustic control was achieved with piezoelectric actuators bonded to the surface of the test structure. The primary focus of this work was devoted to studying alternative sensing techniques in feed forward control applications. Specifically, shaped distributed structural sensors constructed from polyvinylidene fluoride (PVDF), distributed acoustic near-field sensors constructed from PVDF, and accelerometers were explored as alternatives to microphones which are typically implemented as error sensors in the cost function of the control approach. The chosen control algorithm in this study was the feed forward filtered-x version of the adaptive LMS algorithm. A much lower level of system modelling is required with this method of control in comparison to state feedback control methods. As a result, much of the structural acoustic coupling (i.e. system modelling) must be incorporated into the sensor design.
- The Aerodynamics of Low Sweep Delta WingsRullan, Jose Miguel (Virginia Tech, 2008-04-21)The aerodynamics of wings with moderately swept wings continues to be a challenging and important problem due to the current and future use in military aircraft. And yet, there is very little work devoted to the understanding of the aerodynamics of such wings. The problem is that such wings may be able to sustain attached flow next to broken-down delta-wing vortices, or stall like two-dimensional wings, while shedding vortices with generators parallel to their leading edge. To address this situation we studied the flow field over diamond-shaped planforms and sharp-edged finite wings. Possible mechanisms for flow control were identified and tested. We explored the aerodynamics of swept leading edges with no control. We presented velocity and vorticity distributions along planes normal and parallel to the free stream for wings with diamond shaped planform and sharp leading edges. We also presented pressure distributions over the suction side of the wing. Results indicated that in the inboard part of the wing, an attached vortex can be sustained, reminiscent of delta-wing type of a tip vortex, but further in the outboard region 2-D stall dominated even at 13° AOA and total stall at 21° AOA. To explore the unsteady flow field and the effectiveness of leading-edge control of the flow over a diamond-planform wing at 13° AOA, we employed Particle Image Velocimetry (PIV) at a Reynolds number of 43,000 in a water tunnel. Our results indicated that two-D-like vortices were periodically generated and shed. At the same time, an underline feature of the flow, a leading edge vortex was periodically activated, penetrating the separated flow, eventually emerging downstream of the trailing edge of the wing. To study the motion and its control at higher Reynolds numbers, namely 1.3 x 106 we conducted experiments in a wind tunnel. Three control mechanisms were employed, an oscillating mini-flap, a pulsed jet and spanwise continuous blowing. A finite wing with parallel leading and trailing edges and a rectangular tip was swept by 0°, 20°, and 40° and the pulsed jet employed as is control mechanism. A wing with a diamond-shaped-planform, with a leading edge sweep of 42°, was tested with the mini-flap. Surface pressure distributions were obtained and the control flow results were contrasted with the no-control cases. Our results indicated flow control was very effective at 20° sweep, but less so at 40° or 42°. It was found that steady spanwise blowing is much more effective at the higher sweep angle.
- All The King's Horses: The Delta Wing Leading-Edge Vortex System Undergoing Vortex Breakdown: A Contribution to its characterization and Control under Dynamic ConditionsSchaeffler, Norman W. (Virginia Tech, 1998-04-20)The quality of the flow over a 75 degree-sweep delta wing was documented for steady angles of attack and during dynamic maneuvers with and without the use of two control surfaces. The three-dimensional velocity field over a delta wing at a steady angle of attack of 38 degrees and Reynolds number of 72,000 was mapped out using laser-Doppler velocimetry over one side of the wing. The three-dimensional streamline and vortex line distributions were visualized. Isosurfaces of vorticity, planar distributions of helicity and all three vorticity components, and the indicator of the stability of the core were studied and compared to see which indicated breakdown first. Visualization of the streamlines and vortex lines near the core of the vortex indicate that the core has a strong inviscid character, and hence Reynolds number independence, upstream of breakdown, with viscous effects becoming more important downstream of the breakdown location. The effect of cavity flaps on the flow over a delta wing was documented for steady angles of attack in the range 28 degrees to 42 degrees by flow visualization and surface pressure measurements at a Reynolds number of 470,000 and 1,000,000, respectfully. It was found that the cavity flaps postpone the occurrence of vortex breakdown to higher angles of attack than can be realized by the basic delta wing. The effect of continuously deployed cavity flaps during a dynamic pitch-up maneuver of a delta wing on the surface pressure distribution were recorded for a reduced frequency of 0.0089 and a Reynolds number of 1,300,000. The effect of deploying a set of cavity flaps during a dynamic pitch-up maneuver on the surface pressure distribution was recorded for a reduced frequency of 0.0089 and a Reynolds number of 1,300,000 and 187,000. The active deployment of the cavity flaps was shown to have a short-lived beneficial effect on the surface pressure distribution. The effect on the surface pressure distribution of the varying the reduced frequency at constant Reynolds number for a plain delta wing was documented in the reduced frequency range of 0.0089 to 0.0267. The effect of the active deployment of an apex flap during a pitch-up maneuver on the surface pressure distribution at Reynolds numbers of 532,000, 1,000,000, and 1,390,000 were documented with reduced frequencies of 0.0053 to 0.0114 with flap deployment locations in the range of 21° to 36° . The apex flap deployment was found to have a beneficial effect on the surface pressure distribution during the maneuver and in the post-stall regime after the maneuver is completed.
- An Analysis and Critique of DEM Creaion and 3-D Modeling Using Airborne LIDAR and Photogrammetric TechniquesGagné, Marissa Marlene (Virginia Tech, 2001-06-22)Three-dimensional (3D) visualization is rapidly becoming an important tool for many engineering projects. Accurate digital representations of terrain and ground features are extremely useful for efficient design, communication and data representation in projects involving land development, transportation planning, hydrologic analysis, environmental impact studies, and much more. Within the scope of terrain modeling lie a wide variety of techniques used to build digital elevation models (DEMs). Each approach has inherent problems and difficulties that can alter the accuracy and usability of the DEM produced. The main objectives of this study are to examine the various methods used for the creation of digital elevation models and make recommendations as to the appropriate techniques to use depending on specific project circumstances. Data sets generated using two of the methods, photogrammetry and LIDAR, are used to build digital terrain models in various software packages for an analysis of data usability and function. The key results of this research project are two DEMs of a real-world transportation study area and a set of conclusions and recommendations that give insight into the exact methods to be used on various projects. The paper ends with two short appendices, the first of which discusses several software packages and their effectiveness in DEM creation and 3-D modeling. The final appendix is a flow chart summarizing the recommendations for the seven DEM creation methods.
- Analysis of Adiabatic Shear Banding in a Thick-Walled Steel Tube by the Finite Element MethodRattazzi, Dean J. (Virginia Tech, 1996-09-02)The initiation and propagation of adiabatic shear bands is analyzed numerically for an impulsively loaded thick-walled steel tube. A circumferential V-notch located at the outer surface of the center of the tube provides a stress concentration. The material is modeled as strain hardening, strain-rate hardening and thermal softening. The dynamic loading conditions considered are pure torsion, axial pressure combined with torsion, and internal pressure combined with torsion. Because of the stress concentration, a shear band will first initiate in an element adjoining the notch tip and propagate radially inwards through the thickness of the tube. The speed of propagation and the amount of energy required to drive a shear band through the material are calculated. The effects of the pressure preload and the depth of the notch are studied. Also, the influence of thermal softening is investigated by modeling it after a relation proposed by Zhou et al. [Vita removed July 18, 2008 CK/GMc 2/2/2012]
- At-rest and compaction-induced lateral earth pressures of moist soilsIshihara, Katsuji (Virginia Tech, 1993-08-01)An instrumented oedometer was designed and constructed for the purpose of investigating at-rest and compaction-induced earth pressures in moist soils. The device has a split oedometer ring, and horizontal stresses are measured using load cells which support one half of the ring. Rapid cyclic loading was applied to compacted soil specimens, using a digital pressure regulator and a computer-based data acquisition system. The performance of the device was validated by performing tests on silicon rubber and Monterey sand.
- Atomistic simulation of dislocation core structures in B2 NiAlXie, Zhao-Yang (Virginia Tech, 1993)A systematic study of the core structures of (100), (110), and (111) dislocations in B2 NiAI has been conducted using atomistic simulations with an embedded atom method (EAM) potential. New flexible boundary conditions and a new method of graphic representation of dislocation core structure have been employed. The main findings are the following: Core structures: There are no planar core structures of the dislocations found in B2 NiAl. The core spreading of (100) dislocations in NiAl can occur along a variety of planes depending on dislocation slip plane and line orientation. Discrete lattice effects reduced the high strain levels from anisotropic elasticity solution at the dislocation core considerably and resulted in asymmetrical core structures. The core structure of the (110) dislocations is mutilayered with spreading on the {110} plane. The extent of the same strain level comparing with (100) and (111) dislocations is much larger. The complete (111) dislocations in NiAl are also highly non-planar and are stable with respect to splitting into exact 1/2(111) partials as well as to alternative splittings that correspond to the stable fault in the vicinity of the antiphase boundary (APB), in both {110} and {112} planes. Peierls stresses: Peierls stresses of the dislocations have been calculated and have been compared for their relative ease of motion. Local disordering effects: The local disordering effects on the core structure are found to be significant only in the immediate vicinity of the point defect. Compositional deviation from stoichiometry: The simulation results of (100), (110), and (111)dislocations in off stoichiometric NiAl show that the core structures became more extended than the ones in the stoichiometric NiAl. The core structures are not only dependent on the overall composition but also on their local atomic arrangement near the core region. When compositional deviation from stoichiometry is introduced, the response to the applied stress is different for the various slip systems. The Peierls stresses for the usually easiest moving (100){110} dislocations increased and for the (100){100} dislocations decreased, and the latter are expected to be more active in the deformation processes. The practical implications of these results are that it seems very difficult to modify the alloy behaviors through local changes in stoichiometry and ordering state. The best way to improve the ductility of B2 NiAl is to stabilize (111) slip through the addition of alloying elements that can lower the APB energy.
- An axisymmetric finite element solution for elastic wave propagation through threaded connectionsLand, J. George (Virginia Tech, 1996-12-19)An axisymmetric finite element solution method is developed for axial wave propagation through a series of threaded connections in rock drills. A piston impacts axially on a string of rods held together by threaded joints and the wave propagates through these joints before reaching the bit. The energy lost in the joints limits the maximum effective depth of the drill. Several computational techniques are used to efficiently model the problem. Non-reflecting boundaries are used to numerically absorb the waves as they exit a joint. The stored waves are then re-initiated into the next joint eliminating modeling of the entire assembly of rods. The preload in the threads is modeled by shrinking the threaded sleeve onto the rods. A new dynamic relaxation damping scheme is used which starts with an undamped model and then increases the damping until the solution converges. This method converges more rapidly than the standard constant damping.
- Chebyshev Approximation of Discrete polynomials and SplinesPark, Jae H. (Virginia Tech, 1999-11-19)The recent development of the impulse/summation approach for efficient B-spline computation in the discrete domain should increase the use of B-splines in many applications. Because we show here how the impulse/summation approach can also be used for constructing polynomials, the approach with a search table approach for the inverse square root operation allows an efficient shading algorithm for rendering an image in a computer graphics system. The approach reduces the number of multiplies and makes it possible for the entire rendering process to be implemented using an integer processor. In many applications, Chebyshev approximation with polynomials and splines is useful in representing a stream of data or a function. Because the impulse/summation approach is developed for discrete systems, some aspects of traditional continuous approximation are not applicable. For example, the lack of the continuity concept in the discrete domain affects the definition of the local extrema of a function. Thus, the method of finding the extrema must be changed. Both forward differences and backward differences must be checked to find extrema instead of using the first derivative in the continuous domain approximation. Polynomial Chebyshev approximation in the discrete domain, just as in the continuous domain, forms a Chebyshev system. Therefore, the Chebyshev approximation process always produces a unique best approximation. Because of the non-linearity of free knot polynomial spline systems, there may be more than one best solution and the convexity of the solution space cannot be guaranteed. Thus, a Remez Exchange Algorithm may not produce an optimal approximation. However, we show that the discrete polynomial splines approximate a function using a smaller number of parameters (for a similar minimax error) than the discrete polynomials do. Also, the discrete polynomial spline requires much less computation and hardware than the discrete polynomial for curve generation when we use the impulse/summation approach. This is demonstrated using two approximated FIR filter implementations.
- Comparing the Effectiveness of Computer Simulation on Computer Monitor vs. Virtual Reality as Communication Tools in Interior DesignLee, Jongran (Virginia Tech, 1998-10-16)Computer simulations have developed as communication tools in interior design. The purpose of this study was to investigate the effectiveness of two types of computer simulation: passive walk-through animation of an interior design on the PC monitor and immersive walk- through of the same interior design in the CAVETM. This effectiveness was decided in terms of communicating basic visual information, such as visual forms, spatial relationships, colors, and textures. Sixty voluntary subjects chosen from faculty, staff, and graduate students at Virginia Polytechnic Institute and State University were tested experimentally and interviewed. The interior design of the Visualization and Animation Laboratory in the Advanced Communications and Information Center, which is under construction on the Virginia Polytechnic Institute and State University, was simulated by the two types of computer simulation and shown to the participants. This study found that the simulation in the CAVETM was more effective than that on the PC in terms of communicating information about visual forms and spatial relationships in interior design. However, the PC was more effective in communicating information about colors. In terms of textures, no difference was shown. The simulation in the CAVETM appears to have more of a three-dimensional perception and makes people feel as if they were actually present in the space. Both technologies can have a role for general introduction to interior spaces. However, people gain more information in the CAVETM simulation.
- Computerized Ultrasonic Raytracing Model for C-scans of Solid Steel Bridge PinsParikh, Sanjiv D. (Virginia Tech, 1998-08-06)This report describes the results of computerized ultrasonic C-scanning of solid steel bridge pins using a raytrace model. The raytrace model was developed to facilitate interpretation of data obtained from an ultrasonic C-scanning system for the Virginia Transportation Research Council (VTRC). The report discusses the reasons behind the development of the raytrace model, as well as specifications of the model, the input conditions, and the data output and visualization. The model uses as input, various "boundary" conditions of the solid steel pin with reduced diameter pin ends, as well as size and location information of a flaw or a wear groove placed within the main pin body. The model considers sound beams to be composed of rays and calculates ray reflections/conversions. This is done until the ray returns to a receiver location or is lost due to exceeding the time-of-flight. Once the model has returned with the received ray data, it uses the receiver conditions provided (transducer used, size of scanning grid, grid resolution, etc.), and calculates a 2-Dimensional C-scan image for each particular depth/time selected. Using PV-Wave visualization software, it is possible to plot the values for each depth to view a color graph. This graphical plot can then be analyzed/compared with the field C-scans to determine the closest match of a flaw or a wear groove inside the bridge pin. This helps in deciding if the condition of the pin is acceptable.
- Concurrency Optimization for Integrative Network AnalysisBarnes, Robert Otto II (Virginia Tech, 2013-06-12)Virginia Tech\'s Computational Bioinformatics and Bio-imaging Laboratory (CBIL) is exploring integrative network analysis techniques to identify subnetworks or genetic pathways that contribute to various cancers. Chen et. al. developed a bagging Markov random field (BMRF)-based approach which examines gene expression data with prior biological information to reliably identify significant genes and proteins. Using random resampling with replacement (bootstrapping or bagging) is essential to confident results but is computationally demanding as multiple iterations of the network identification (by simulated annealing) is required. The MATLAB implementation is computationally demanding, employs limited concurrency, and thus time prohibitive. Using strong software development discipline we optimize BMRF using algorithmic, compiler, and concurrency techniques (including Nvidia GPUs) to alleviate the wall clock time needed for analysis of large-scale genomic data. Particularly, we decompose the BMRF algorithm into functional blocks, implement the algorithm in C/C++ and further explore the C/C++ implementation with concurrency optimization. Experiments are conducted with simulation and real data to demonstrate that a significant speedup of BMRF can be achieved by exploiting concurrency opportunities. We believe that the experience gained by this research shall help pave the way for us to develop computationally efficient algorithms leveraging concurrency, enabling researchers to efficiently analyze larger-scale data sets essential for furthering cancer research.
- Control of a Chaotic Double Pendulum Model for a Ship Mounted CraneHsu, Tseng-Hsing (Virginia Tech, 2000-02-22)An extension of the original Ott-Grebogy-Yorke control scheme is used on a simple double pendulum. The base point of the double pendulum moves in both horizontal and vertical directions which leads to rather complicated behavior.A delay coordinate is used to reconstruct the attractor. The required dimension is determined by the False Nearest Neighbor analysis. A newly developed Fixed Point Transformation method is used to identify the unstable periodic orbit (UPO). Two different system parameters are used to control the motion. Minimum parameter constraints are studied. The use of discrete values for parameter changes is also investigated. Based on these investigations, a new on-off control scheme is proposed to simplify the implementation of the controller and minimize the delay in applying the control.
- Creep Behavior Of Thin Laminates Of Iron-Cobalt Alloys For Use In Switched Reluctance Motors And GeneratorsFingers, Richard Todd (Virginia Tech, 1998-06-17)The United States Air Force is in the process of developing magnetic bearings as well as an aircraft Integrated Power Unit and an Internal Starter/Generator for main propulsion engines. These developments are the driving force behind a new emphasis on high temperature, high strength magnetic materials for power applications. Analytical work, utilizing elasticity theory, in conjunction with design requirements, indicates a need for magnetic materials to have strengths in excess of 80 ksi up to about 1000 degrees F. It is this combination of desired material characteristics that is the motivation for this effort to measure, model, and predict the creep behavior of such advanced magnetic materials. Hiperco® Alloy 50HS, manufactured by Carpenter Technology Corporation, is one of the leading candidates for application and is studied in this effort by subjecting mechanical test specimens to a battery of tensile and creep tests. The tensile tests provide stress versus strain behaviors that clearly indicate: a yield point, a heterogeneous deformation described as LuÌ ders elongation, the Portevin-LeChatelier effect at elevated temperatures, and, most often, a section of homogeneous deformation that concluded with necking and fracture. Creep testing indicated two distinct types of behavior. The first was a traditional response with primary, secondary and tertiary stages, while the second type could be characterized by an abrupt increase in strain rate that acted as a transition from one steady state behavior to another. This second linear region was then followed by the tertiary stage. The relationship between the tensile response and the creep responses is discussed. Analyses of the mechanical behavior includes double linear regression of empirically modeled data, scanning electron microscopy for microstructural investigations, isochronous stress-strain relations, and constant strain rate testing to relate the tensile and creep test parameters. Also, elastic and creep deformation analyses are done, which incorporate material property data and material constants determined along with stress and displacement profiles for a specific Air Force design configuration.
- Defect Structures in Ordered Intermetallics; Grain Boundaries and Surfaces in FeAl, NiAl, CoAl and TiAlMutasa, Batsirai M. (Virginia Tech, 1997-05-16)Ordered intermetallics based on transition metal aluminides have been proposed as structural materials for advanced aerospace applications. The development of these materials, which have the advantages of low density and high operating temperatures, have been focused on the aluminides of titanium, nickel and iron. Though these materials exhibit attractive properties at elevated temperatures, their utilization is limited due to their propensity for low temperature fracture and susceptibility to decreased ductility due to environmental effects. A major embrittlement mechanism at ambient temperatures in these aluminides has been by the loss of cohesive strength at the interfaces (intergranular failure). This study focuses on this mechanism of failure, by undertaking a systematic study of the energies and structures of specific grain boundaries in some of these compounds. The relaxed atomistic grain boundary structures in B2 aluminides, FeAl, NiAl and CoAl and L1₀ γ-TiAl were investigated using molecular statics and embedded atom potentials in order to explore general trends for a series of B2 compounds as well as TiAl. The potentials used correctly predict the proper mechanism of compositional disorder of these compounds. Using these potentials, point defects, free surface energies and various grain boundary structures of similar energies in three B2 compounds, FeAl, NiAl and CoAl were studied. These B2 alloys exhibited increasing anti-phase boundary energies respectively. The misorientations chosen for detailed study correspond to the Σ5(310) and Σ5(210) boundaries. These boundaries were investigated with consideration given to possible variations in the local chemical composition. The effects of both boundary stoichiometry and bulk stoichiometry on grain boundary energetics were also considered. Defect energies were calculated for boundaries contained in both stoichiometric and off-stoichiometric bulk. The surface energies for these aluminides were also calculated so that trends concerning the cohesive energy of the boundaries could be studied. The implications of stoichiometry, the multiplicity of the boundary structures and possible transformations between them for grain boundary brittleness are also discussed.
- Deformation mechanisms in B2 aluminides: shear faults and dislocation core structures in FeAl, NiAl, CoAl and FeNiAlVailhé, Christophe N. P. (Virginia Tech, 1996)Although aluminides with the B2 crystal structures have good properties for high temperature applications, the strong ordered bonds that make them durable at high temperature also make them too brittle at room temperature for industrial fabrication. In order to better understand this lack of ductility, molecular statics simulations of planar fault defects and dislocation core structures were conducted in a series of B2 aluminides with increasing ordering energy (FeAl, NiAl, CoAl). The simulation results in NiAl were compared with in-situ straining observations of dislocation motion. The dislocations simulated were of (100) and (111) types. The simulations results obtained indicate a strong influence of the planar fault energies on the mobility of the dislocations. As the cohesive energy increases from FeAl to CoAl, antiphase boundary and unstable stacking fault energies increase resulting in more constricted dislocation core spreadings. This constriction of the cores decreases the mobility of dislocation with planar core structures and increases the mobility of dislocations with non-planar cores. The (100) screw dislocations were found with planar cores in {110} planes for FeAl, NiAl and CoAl. For very high APB values, the cores were very compact, as predicted by the Peierls- Nabarro model. As the APB energies decrease, increasingly two dimensional spreading of the cores was observed and ultimately dislocation dissociation into partials. As a result of the deviation of the stable planar fault energy from the APB fault, the partials were not exact 1/2(111) but deviate to the point corresponding to the actual minima of the γ-surfaces for these compounds. Alloying NiAl with Fe was found to promote the dissociation of the (100) dislocation. The in-situ straining of a single crystal of NiAl only revealed the motion of (100) dislocations. Both in-situ observations and atomistic simulations agreed on the zig-zag shape of the (100) dislocation with an average screw orientation. In this configuration, the mobility of the dislocation is severely reduced.
- The development of a modular finite element program for analysis of soil-structure interactionMorrison, Clark Stephen (Virginia Tech, 1995)The development of SAGE, a modular finite element program for analysis of soil structure interaction, is described. The modular structure of the program makes it easy to validate, easy to understand, easy to modify, and easy to extend. Issues affecting the development of the program are discussed. Newton-Raphson iteration, and its application to finite element analysis is described. Methods for improving the convergence behavior of Newton-Raphson iteration are discussed. The methods include two global convergence algorithms: the line search and the dogleg search. Use of a consistent tangent stress-strain matrix for formulating the stiffness matrix, and its influence on convergence, is discussed. Approximate methods for calculating the consistent tangent stress-strain matrix are presented. Numerical procedures for simulating point loads, distributed loads, gravity loads, excavation, and fill placement are given. It is shown that Newton-Raphson iteration will correct numerical errors associated with the use of very stiff interface elements adjacent to relatively soft soil elements. The results of the use of Gauss integration and Newton-Cotes integration for interface elements are compared. A modification of the hyperbolic model incorporating Mohr-Coulomb plasticity is described. It is shown that use of this model substantially reduces "overshoot", or instances of elements carrying stresses that exceed the strength of the element. Implementation of the Cam clay model into SAGE is described. Several simple example problems are presented that illustrate the stress-strain behavior calculated using this model. Analyses of a footing subjected to combined vertical and horizontal loads are described. The problem was chosen to illustrate the capacity of SAGE to calculate stresses and deformations in soil-structure systems subjected to unusual loading conditions.
- Development of a Virtual Scientific Visualization Environment for the Analysis of Complex FlowsEtebari, Ali (Virginia Tech, 2002-11-15)This project offers a multidisciplinary approach towards the acquisition, analysis and visualization of experimental data that pertain to cardiovascular applications. First and foremost, the capabilities of our Time-Resolved Digital Particle Image Velocimetry (TRDPIV) system were improved, allowing near-wall wall TRDPIV on compliant, dynamically moving boundaries. As a result, false flow-field vectors due to reflections from the boundary walls were eliminated, and allowing measurement of wall shear stress, wall shear rate, and oscillating shear index within as little as fifty microns of the boundary. Similar in-vitro measurements have not been reported to date by any other group. Second, an immersive, virtual environment (VE) was developed for the investigation and analysis of vortical, spatio-temporally developing flows with complex fluid-structure interactions. This VE was used to study flows in the cardiovascular system, particularly for flow through mechanical heart valves and inside the heart left ventricle (LV). The simulation provides three-dimensional (3-D) visualization of in-vitro heart flow mechanics, allowing global, volumetric flow analysis, and a useful environment for comparison with in-vivo MRI velocimetry data. 3-D glyphs (symbols representing informational parameters) are used to visually represent the flow parameters in the form of an ellipse attached to a cone, where the ellipse represents a second-order Reynolds stress tensor, and the cone represents the velocity magnitude and direction at a particular point in space, and the color corresponds to an out-of-plane vorticity. This new system has a major advantage over conventional 2-D systems in that it successfully doubles the number of visualized parameters, and allows for visualization of a time-dependent series of flow data in the Virginia Tech CAVETM immersive VE. The user controls his/her viewpoint, and can thus navigate through the simulation and view the flow field from any perspective in the immersive VE. Finally, an edge detection algorithm was developed to determine the inner and outer myocardial boundaries, and from this information calculate the local thickness distribution of the myocardium and a myocardial area approximation. This information is important in validating our in-vitro system, and is integral to the evaluation and diagnosis of congestive heart disease and its progression.
- Development of Reduced-Order Models for Lift and Drag on Oscillating Cylinders with Higher-Order Spectral MomentsQin, Lihai (Virginia Tech, 2004-11-09)An optimal solution of vortex-induced vibrations of structures would be a time-domain numerical simulation that simultaneously solves the fluid flow and structural response. Yet, the requirements in terms of computing power remains a major obstacle for implementing such a simulation. On the other hand, lower- or reduced-order models provide an alternative for determining structural response to forcing by fluid flow. The objective of this thesis is to provide a consistent approach for the development of reduced-order models for the lift and drag on oscillating cylinders and the identification of their parameters. Amplitudes and phases of higher-order spectral moments of the lift and drag coefficients data are combined with approximate solutions of the representative models to determine their parameters. The results show that the amplitude and phase of the trispectrum could be used to model the lift on the oscillating cylinder under different excitation conditions. Moreover, the amplitude and phase of the cross-bispectrum could be used to establish the lift-drag relation for oscillating cylinders. A forced van der Pol equation is used to represent the lift on a transversely oscillating cylinder, and a parametrically excited van der Pol equation is used to model the lift coefficient on an inline oscillating cylinder. All cases of excitations lead to close values for the damping and nonlinear parameters in the van der Pol equation. Consequently, and as shown in this thesis, different excitation cases could be used to identify the parameters in the governing equations. Moreover, the results show that the drag coefficient could be derived from the lift coefficient through a square relation that takes into account the effects of the forced motions.