Browsing by Author "Li, Guohua"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigsLei, Shaohua; Samuel, Helen; Twitchell, Erica; Bui, Tammy; Ramesh, Ashwin; Wen, Ke; Weiss, Mariah; Li, Guohua; Yang, Xingdong; Jiang, Xi; Yuan, Lijuan (2016-04-26)Human noroviruses (HuNoVs) are the leading cause of epidemic gastroenteritis worldwide. Study of HuNoV biology has been hampered by the lack of an efficient cell culture system. Recently, enteric commensal bacteria Enterobacter cloacae has been recognized as a helper in HuNoV infection of B cells in vitro. To test the influences of E. cloacae on HuNoV infectivity and to determine whether HuNoV infects B cells in vivo, we colonized gnotobiotic pigs with E. cloacae and inoculated pigs with 2.74 × 10(4) genome copies of HuNoV. Compared to control pigs, reduced HuNoV shedding was observed in E. cloacae colonized pigs, characterized by significantly shorter duration of shedding in post-inoculation day 10 subgroup and lower cumulative shedding and peak shedding in individual pigs. Colonization of E. cloacae also reduced HuNoV titers in intestinal tissues and in blood. In both control and E. cloacae colonized pigs, HuNoV infection of enterocytes was confirmed, however infection of B cells was not observed in ileum, and the entire lamina propria in sections of duodenum, jejunum, and ileum were HuNoV-negative. In summary, E. cloacae inhibited HuNoV infectivity, and B cells were not a target cell type for HuNoV in gnotobiotic pigs, with or without E. cloacae colonization.
- High Protective Efficacy of Probiotics and Rice Bran against Human Norovirus Infection and Diarrhea in Gnotobiotic PigsLei, Shaohua; Ramesh, Ashwin; Twitchell, Erica; Wen, Ke; Bui, Tammy; Weiss, Mariah; Yang, Xingdong; Kocher, Jacob; Li, Guohua; Giri-Rachman, Ernawati; Trang, Nguyen Van; Jiang, Xi; Ryan, Elizabeth P.; Yuan, Lijuan (2016)Probiotics have been recognized as vaccine adjuvants and therapeutic agents to treat acute gastroenteritis in children. We previously showed that rice bran (RB) reduced human rotavirus diarrhea in gnotobiotic pigs. Human noroviruses (HuNoVs) are the major pathogens causing non-bacterial acute gastroenteritis worldwide. In this study, Lactobacillus rhamnosus GG (LGG) and Escherichia coli Nissle 1917 (EcN) were first screened for their ability to bind HuNoV P particles and virions derived from clinical samples containing HuNoV genotype GII.3 and GII.4, then the effects of LGG+EcN and RB on HuNoV infection and diarrhea were investigated using the gnotobiotic pig model. While LGG+EcN colonization inhibited HuNoV shedding, probiotic cocktail regimens in which RB feeding started 7 days prior to or 1 day after viral inoculation in the LGG+EcN colonized gnotobiotic pigs exhibited high protection against HuNoV diarrhea and shedding, characterized by significantly reduced incidence (89 versus 20%) and shorter mean duration of diarrhea (2.2 versus 0.2 days), as well as shorter mean duration of virus shedding (3.2 versus 1.0 days). In both probiotic cocktail groups, the diarrhea reduction rates were 78% compared with the control group, and diarrhea severity was reduced as demonstrated by the significantly lower cumulative fecal scores. The high protective efficacy of the probiotic cocktail regimens was attributed to stimulation of IFN-γ(+) T cell responses, increased production of intestinal IgA and IgG, and maintenance of healthy intestinal morphology (manifested as longer villi compared with the control group). Therefore, probiotic cocktail regimens containing LGG+EcN and RB may represent highly efficacious strategies to prevent and treat HuNoV gastroenteritis, and potentially other human enteric pathogens.
- High protective efficacy of rice bran against human rotavirus diarrhea via enhancing probiotic growth, gut barrier function, and innate immunityYang, Xingdong; Twitchell, Erica; Li, Guohua; Wen, Ke; Weiss, Mariah; Kocher, Jacob; Lei, Shaohua; Ramesh, Ashwin; Ryan, Elizabeth P.; Yuan, Lijuan (Nature Publishing Group, 2015-10-13)Previously, we showed that rice bran (RB) was able to reduce human rotavirus (HRV) diarrhea in gnotobiotic pigs. Here, we investigated its effect on the growth of diarrhea-reducing probiotic Lactobacillus rhamnosus GG (LGG) and Escherichia coli Nissle (EcN), and the resulting effects on HRV diarrhea, gut epithelial health, permeability and innate immune responses during virulent HRV challenge. On 3, 5, and 7 days of age pigs were inoculated with 2 × 104 colony-formingunits LGG+EcN to initiate colonization. Daily RB supplementation (replacing 10% calorie intake) was started at 5 days of age and continued until euthanasia. A subset of pigs in each group was challenged orally with 105 focus-forming-units of virulent HRV at 33 days of age. RB completely prevented HRV diarrhea in LGG+EcN colonized pigs. RB significantly promoted the growth of both probiotic strains in the gut (~5 logs) and increased the body-weight-gain at 4–5 weeks of age compared to non-RB group. After HRV challenge, RB-fed pigs had significantly lower ileal mitotic index and villus width, and significantly increased intestinal IFN-γ and total IgA levels compared to non-RB group. Therefore, RB plus LGG+EcN colonization may represent a highly effective therapeutic approach against HRV and potentially a variety of other diarrhea-inducing enteric pathogens.
- Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiencyLei, Shaohua; Ryu, Junghyun; Wen, Ke; Twitchell, Erica; Bui, Tammy; Ramesh, Ashwin; Weiss, Mariah; Li, Guohua; Samuel, Helen; Clark-Deener, Sherrie; Jiang, Xi; Lee, Kiho; Yuan, Lijuan (Nature Publishing Group, 2016-04-27)Application of genetically engineered (GE) large animals carrying multi-allelic modifications has been hampered by low efficiency in production and extended gestation period compared to rodents. Here, we rapidly generated RAG2/IL2RG double knockout pigs using direct injection of CRISPR/Cas9 system into developing embryos. RAG2/IL2RG deficient pigs were immunodeficient, characterized by depletion of lymphocytes and either absence of or structurally abnormal immune organs. Pigs were maintained in gnotobiotic facility and evaluated for human norovirus (HuNoV) infection. HuNoV shedding lasted for 16 days in wild type pigs, compared to 27 days (until the end of trials) in RAG2/IL2RG deficient pigs. Additionally, higher HuNoV titers were detected in intestinal tissues and contents and in blood, indicating increased and prolonged HuNoV infection in RAG2/IL2RG deficient pigs and the importance of lymphocytes in HuNoV clearance. These results suggest that GE immunodeficient gnotobiotic pigs serve as a novel model for biomedical research and will facilitate HuNoV studies.
- Lactobacillus rhamnosus GG modulates innate signaling pathway and cytokine responses to rotavirus vaccine in intestinal mononuclear cells of gnotobiotic pigs transplanted with human gut microbiotaWang, Haifeng; Gao, Kan; Wen, Ke; Allen, Irving C.; Li, Guohua; Zhang, Wenming; Kocher, Jacob; Yang, Xingdong; Giri-Rachman, Ernawati; Li, Guan-Hong; Clark-Deener, Sherrie; Yuan, Lijuan (2016)BACKGROUND: A better understanding of mechanisms underlying dose-effects of probiotics in their applications as treatments of intestinal infectious or inflammatory diseases and as vaccine adjuvant is needed. In this study, we evaluated the modulatory effects of Lactobacillus rhamnosus GG (LGG) on transplanted human gut microbiota (HGM) and on small intestinal immune cell signaling pathways in gnotobiotic pigs vaccinated with an oral attenuated human rotavirus (AttHRV) vaccine. RESULTS: Neonatal HGM transplanted pigs were given two doses of AttHRV on 5 and 15 days of age and were divided into three groups: none-LGG (AttHRV), 9-doses LGG (AttHRV + LGG9X), and 14-doses LGG (AttHRV + LGG14X) (n = 3-4). At post-AttHRV-inoculation day 28, all pigs were euthanized and intestinal contents and ileal tissue and mononuclear cells (MNC) were collected. AttHRV + LGG14X pigs had significantly increased LGG titers in the large intestinal contents and shifted structure of the microbiota as indicated by the formation of a cluster that is separated from the cluster formed by the AttHRV and AttHRV + LGG9X pigs. The increase in LGG titers concurred with significantly increased ileal HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine reported in our previous publication, suggesting pro-Th1 adjuvant effects of the LGG. Both 9- and 14-doses LGG fed pig groups had significantly higher IkBα level and p-p38/p38 ratio, while significantly lower p-ERK/ERK ratio than the AttHRV pigs, suggesting activation of regulatory signals during immune activation. However, 9-doses, but not 14-doses LGG fed pigs had enhanced IL-6, IL-10, TNF-α, TLR9 mRNA levels, and p38 MAPK and ERK expressions in ileal MNC. Increased TLR9 mRNA was in parallel with higher mRNA levels of cytokines, p-NF-kB and higher p-p38/p38 ratio in MNC of the AttHRV + LGG9X pigs. CONCLUSIONS: The relationship between modulation of gut microbiota and regulation of host immunity by different doses of probiotics is complex. LGG exerted divergent dose-dependent effects on the intestinal immune cell signaling pathway responses, with 9-doses LGG being more effective in activating the innate immunostimulating TLR9 signaling pathway than 14-doses in the HGM pigs vaccinated with AttHRV.
- Modeling human enteric dysbiosis and rotavirus immunity in gnotobiotic pigsTwitchell, Erica; Tin, Christine; Wen, Ke; Zhang, Husen; Becker-Dreps, Sylvia; Azcarate-Peril, M. Andrea; Vilchez, Samuel; Li, Guohua; Ramesh, Ashwin; Weiss, Mariah; Lei, Shaohua; Bui, Tammy; Yang, Xingdong; Schultz-Cherry, Stacey L.; Yuan, Lijuan (2016)BACKGROUND: Rotavirus vaccines have poor efficacy in infants from low- and middle-income countries. Gut microbiota is thought to influence the immune response to oral vaccines. Thus, we developed a gnotobiotic (Gn) pig model of enteric dysbiosis to study the effects of human gut microbiota (HGM) on immune responses to rotavirus vaccination, and the effects of rotavirus challenge on the HGM by colonizing Gn pigs with healthy HGM (HHGM) or unhealthy HGM (UHGM). The UHGM was from a Nicaraguan infant with a high enteropathy score (ES) and no seroconversion following administration of oral rotavirus vaccine, while the converse was characteristic of the HHGM. Pigs were vaccinated, a subset was challenged, and immune responses and gut microbiota were evaluated. RESULTS: Significantly more rotavirus-specific IFN-γ producing T cells were in the ileum, spleen, and blood of HHGM than those in UHGM pigs after three vaccine doses, suggesting HHGM induces stronger cell-mediated immunity than UHGM. There were significant correlations between multiple Operational Taxonomic Units (OTUs) and frequencies of IFN-γ producing T cells at the time of challenge. There were significant positive correlations between Collinsella and CD8+ T cells in blood and ileum, as well as CD4+ T cells in blood, whereas significant negative correlations between Clostridium and Anaerococcus, and ileal CD8+ and CD4+ T cells. Differences in alpha diversity and relative abundances of OTUs were detected between the groups both before and after rotavirus challenge. CONCLUSION: Alterations in microbiome diversity and composition along with correlations between certain microbial taxa and T cell responses warrant further investigation into the role of the gut microbiota and certain microbial species on enteric immunity. Our results support the use of HGM transplanted Gn pigs as a model of human dysbiosis during enteric infection, and oral vaccine responses.
- Modeling human enteric dysbiosis and rotavirus immunity in gnotobiotic pigs. [poster]Twitchell, Erica; Tin, Christine; Wen, Ke; Zhang, Husen; Becker-Dreps, Sylvia; Azcarate-Peril, M. Andrea; Vilchez, Samuel; Li, Guohua; Ramesh, Ashwin; Weiss, Mariah; Lei, Shaohua; Bui, Tammy; Yang, Xingdong; Schultz-Cherry, Stacey L.; Yuan, Lijuan (2016-12)Background Oral vaccines, such as those for rotavirus are less efficacious in children from underdeveloped regions, where most severe disease occurs, than in children from more affluent areas. This disparity may be due to altered gut microbiota composition (dysbiosis), environmental enteropathy (EE), high maternal antibody titers, malnutrition, or influence of concurrent enteropathogens. Composition of gut microbiota in children is influenced by method of delivery, environmental hygiene and nutritional status. Studies have shown composition of gut microbiota to be significantly different between African and northern European infants and between malnourished and well-nourished children. A recent study has shown that EE was associated with failure of the oral rotavirus vaccine Rotarix, and underperformance of the oral polio vaccine. An animal model to study the effects of enteric dysbiosis on oral vaccine immunity is needed to evaluate potential treatments to reverse the dysbiosis and/or improve vaccine efficacy. Pigs and humans have similar immune systems, high genomic and protein sequence homology, omnivorous diet, and colonic fermentation, making pigs valuable models in biomedical research. The neonatal gnotobiotic (Gn) pig is a well-established model of human rotavirus disease and immunity.
- A neonatal gnotobiotic pig model of human enterovirus 71 infection and associated immune responsesYang, Xingdong; Li, Guohua; Wen, Ke; Bui, Tammy; Liu, Fangning; Kocher, Jacob; Jortner, Bernard S.; Vonck, Marlice; Pelzer, Kevin D.; Deng, Jie; Zhu, Runan; Li, Yuyun; Qian, Yuan; Yuan, Lijuan (Nature Publishing Group, 2014-05-21)Vaccine development and pathogenesis studies for human enterovirus 71 are limited by a lack of suitable animal models. Here, we report the development of a novel neonatal gnotobiotic pig model using the non-pig-adapted neurovirulent human enterovirus 71 strain BJ110, which has a C4 genotype. Porcine small intestinal epithelial cells, peripheral blood mononuclear cells and neural cells were infected in vitro. Oral and combined oral–nasal infection of 5-day-old neonatal gnotobiotic pigs with 53108 fluorescence forming units (FFU) resulted in shedding up to 18 days post-infection, with viral titers in rectal swab samples peaking at 2.223108 viral RNA copies/mL. Viral capsid proteins were detected in enterocytes within the small intestines on post-infection days (PIDs) 7 and 14. Additionally, viral RNA was detected in intestinal and extra-intestinal tissues, including the central nervous system, the lung and cardiac muscle. The infected neonatal gnotobiotic pigs developed fever, forelimb weakness, rapid breathing and some hand, foot and mouth disease symptoms. Flow cytometry analysis revealed increased frequencies of both CD41 and CD81 IFN-c-producing T cells in the brain and the blood on PID 14, but reduced frequencies were observed in the lung. Furthermore, high titers of serum virus-neutralizing antibodies were generated in both orally and combined oral–nasally infected pigs on PIDs 7, 14, 21 and 28. Together, these results demonstrate that neonatal gnotobiotic pigs represent a novel animal model for evaluating vaccines for human enterovirus 71 and for understanding the pathogenesis of this virus and the associated immune responses.
- Probiotic as Adjuvant Significantly Improves Protection of the Lanzhou Trivalent Rotavirus Vaccine against Heterologous Challenge in a Gnotobiotic Pig Model of Human Rotavirus Infection and DiseaseParreno, Viviana; Bai, Muqun; Liu, Fangning; Jing, Jiqiang; Olney, Erika; Li, Guohua; Wen, Ke; Yang, Xingdong; Castellucc, Tammy Bui; Kocher, Jacob F.; Zhou, Xu; Yuan, Lijuan (MDPI, 2022-09-14)This preclinical study in the gnotobiotic (Gn) pig model of human rotavirus (HRV) infection and disease evaluates the effect of probiotic Lactobacillus rhamnosus GG (LGG) as a mucosal adjuvant on the immunogenicity and cross-protective efficacy of the Lanzhou live oral trivalent (G2, G3, G4) vaccine (TLV, aka LLR3). Gn pigs were immunized with three doses of TLV with or without concurrent administration of nine doses of LGG around the time of the first dose of the TLV vaccination, and were challenged orally with the virulent heterotypic Wa G1P[8] HRV. Three doses of TLV were highly immunogenic and conferred partial protection against the heterotypic HRV infection. LGG significantly enhanced the intestinal and systemic immune responses and improved the effectiveness of protection against the heterotypic HRV challenge-induced diarrhea and virus shedding. In conclusion, we demonstrated the immune-stimulating effects of probiotic LGG as a vaccine adjuvant and generated detailed knowledge regarding the cross-reactive and type-specific antibody and effector B and T cell immune responses induced by the TLV. Due to the low cost, ease of distribution and administration, and favorable safety profiles, LGG as an adjuvant has the potential to play a critical role in improving rotavirus vaccine efficacy and making the vaccines more cost-effective.
- Probiotic Lactobacillus rhamnosus GG Enhanced Th1 Cellular Immunity but Did Not Affect Antibody Responses in a Human Gut Microbiota Transplanted Neonatal Gnotobiotic Pig ModelWen, Ke; Tin, Christine; Wang, Haifeng; Yang, Xingdong; Li, Guohua; Giri-Rachman, Ernawati; Kocher, Jacob; Bui, Tammy; Clark-Deener, Sherrie; Yuan, Lijuan (PLOS, 2014-04-10)This study aims to establish a human gut microbiota (HGM) transplanted gnotobiotic (Gn) pig model of human rotavirus (HRV) infection and diarrhea, and to verify the dose-effects of probiotics on HRV vaccine-induced immune responses. Our previous studies using the Gn pig model found that probiotics dose-dependently regulated both T cell and B cell immune responses induced by rotavirus vaccines. We generated the HGM transplanted neonatal Gn pigs through daily feeding of neonatal human fecal suspension to germ-free pigs for 3 days starting at 12 hours after birth. We found that attenuated HRV (AttHRV) vaccination conferred similar overall protection against rotavirus diarrhea and virus shedding in Gn pigs and HGM transplanted Gn pigs. HGM promoted the development of the neonatal immune system, as evidenced by the significantly enhanced IFN-c producing T cell responses and reduction of regulatory T cells and their cytokine production in the AttHRV-vaccinated pigs. The higher dose Lactobacillus rhamnosus GG (LGG) feeding (14 doses, up to 109 colonyforming-unit [CFU]/dose) effectively increased the LGG counts in the HGM Gn pig intestinal contents and significantly enhanced HRV-specific IFN-c producing T cell responses to the AttHRV vaccine. Lower dose LGG (9 doses, up to 106 CFU/dose) was ineffective. Neither doses of LGG significantly improved the protection rate, HRV-specific IgA and IgG antibody titers in serum, or IgA antibody titers in intestinal contents compared to the AttHRV vaccine alone, suggesting that an even higher dose of LGG is needed to overcome the influence of the microbiota to achieve the immunostimulatory effect in the HGM pigs. This study demonstrated that HGM Gn pig is an applicable animal model for studying immune responses to rotavirus vaccines and can be used for studying interventions (i.e., probiotics and prebiotics) that may enhance the immunogenicity and protective efficacy of vaccines through improving the gut microbiota
- Probiotic Lactobacillus rhamnosus GG mono-association suppresses human rotavirus-induced autophagy in the gnotobiotic piglet intestineWu, Shaoping; Yuan, Lijuan; Zhang, Yongguo; Liu, Fangning; Li, Guohua; Wen, Ke; Kocher, Jacob; Yang, Xingdong; Sun, Jun (2013-08-07)Background Human rotavirus (HRV) is the most important cause of severe diarrhea in infants and young children. Probiotic Lactobacillus rhamnosus GG (LGG) reduces rotavirus infection and diarrhea. However, the molecular mechanisms of LGG-mediated protection from rotavirus infection are poorly understood. Autophagy plays an essential role in responses to microbial pathogens. However, the role of autophagy in HRV infection and LGG treatment is unknown. We hypothesize that rotavirus gastroenteritis activates autophagy and that LGG suppresses virus-induced autophagy and prevents intestinal damage in infected piglets. Methods We used LGG feeding to combat viral gastroenteritis in the gnotobiotic pig model of virulent HRV infection. Results We found that LGG feeding did not increase autophagy, whereas virus infection induced autophagy in the piglet intestine. Virus infection increased the protein levels of the autophagy markers ATG16L1 and Beclin-1 and the autophagy regulator mTOR. LGG treatment during viral gastroenteritis reduced autophagy marker expression to normal levels, induced apoptosis and partially prevented virus-induced tissue damage. Conclusion Our study provides new insights into virus-induced autophagy and LGG suppression of uncontrolled autophagy and intestinal injury. A better understanding of the antiviral activity of LGG will lead to novel therapeutic strategies for infant infectious diseases.
- Probiotics and virulent human rotavirus modulate the transplanted human gut microbiota in gnotobiotic pigsZhang, Husen; Wang, Haifeng; Shepherd, Megan L.; Wen, Ke; Li, Guohua; Yang, Xingdong; Kocher, Jacob; Giri-Rachman, Ernawati; Dickerman, Allan W.; Settlage, Robert E.; Yuan, Lijuan (2014-09-09)We generated a neonatal pig model with human infant gut microbiota (HGM) to study the effect of a probiotic on the composition of the transplanted microbiota following rotavirus vaccination and challenge. All the HGM-transplanted pigs received two doses of an oral attenuated rotavirus vaccine. The gut microbiota of vaccinated pigs were investigated for effects of Lactobacillus rhamnosus GG (LGG) supplement and homotypic virulent human rotavirus (HRV) challenge. High-throughput sequencing of V4 region of 16S rRNA genes demonstrated that HGM-transplanted pigs carried microbiota similar to that of the C-section delivered baby. Firmicutes and Proteobacteria represented over 98% of total bacteria in the human donor and the recipient pigs. HRV challenge caused a phylum-level shift from Firmicutes to Proteobacteria. LGG supplement prevented the changes in microbial communities caused by HRV challenge. In particular, members of Enterococcus in LGG-supplemented pigs were kept at the baseline level, while they were enriched in HRV challenged pigs. Taken together, our results suggested that HGM pigs are valuable for testing the microbiota’s response to probiotic interventions for treating infantile HRV infection.
- Simvastatin Reduces Protection and Intestinal T Cell Responses Induced by a Norovirus P Particle Vaccine in Gnotobiotic PigsKocher, Jacob; Castellucci, Tammy Bui; Wen, Ke; Li, Guohua; Yang, Xingdong; Lei, Shaohua; Jiang, Xi; Yuan, Lijuan (MDPI, 2021-07-01)Noroviruses (NoVs) are a leading cause of acute gastroenteritis worldwide. P particles are a potential vaccine candidate against NoV. Simvastatin is a cholesterol-reducing drug that is known to increase NoV infectivity. In this study, we examined simvastatin’s effects on P particle-induced protective efficacy and T-cell immunogenicity using the gnotobiotic pig model of human NoV infection and diarrhea. Pigs were intranasally inoculated with three doses (100 µg/dose) of GII.4/VA387-derived P particles together with monophosphoryl lipid A and chitosan adjuvants. Simvastatin-fed pigs received 8 mg/day orally for 11 days prior to challenge. A subset of pigs was orally challenged with 10 ID50 of a NoV GII.4/2006b variant at post-inoculation day (PID) 28 and monitored for 7 days post-challenge. Intestinal and systemic T cell responses were determined pre- and postchallenge. Simvastatin abolished the P particle’s protection and significantly increased diarrhea severity after NoV infection. Simvastatin decreased proliferation of virus-specific and non-specific CD8 T cells in duodenum and virus-specific CD4 and CD8 T cells in spleen and significantly reduced numbers of intestinal mononuclear cells in vaccinated pigs. Furthermore, simvastatin significantly decreased numbers of duodenal CD4+IFN-γ+, CD8+IFN-γ+ and regulatory T cells and total duodenal activated CD4+ and CD8+ T cells in vaccinated pigs pre-challenge at PID 28. Following challenge, simvastatin prevented the IFN-γ+ T cell response in spleen of vaccinated pigs. These results indicate that simvastatin abolished P particle vaccine-induced partial protection through, at least in part, impairing T cell immunity. The findings have specific implications for the development of preventive and therapeutic strategies against NoV gastroenteritis, especially for the elderly population who takes statin-type drugs.