Browsing by Author "Lin, Chi-Chien"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Alantolactone Suppresses Proliferation and the Inflammatory Response in Human HaCaT Keratinocytes and Ameliorates Imiquimod-Induced Skin Lesions in a Psoriasis-Like Mouse ModelChuo, Wen-Ho; Tung, Yu-Tang; Wu, Chao-Liang; Bracci, Nicole R.; Chang, Yu-Kang; Huang, Hung-Yi; Lin, Chi-Chien (MDPI, 2021-06-25)Psoriasis is an immune-mediated inflammatory disease that affects 2% to 3% of the world population. Alantolactone, a sesquiterpene lactone, was isolated from Inula helenium and Radix inulae and has several biological effects, including antifungal, anthelmintic, antimicrobial, anti-inflammatory, antitrypanosomal, and anticancer properties. This study aimed to evaluate the antipsoriatic potential of alantolactone in vitro and in vivo and to explore its underlying mechanisms. These results showed that alantolactone significantly attenuated IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) cytokine-induced hyperproliferation in HaCaT keratinocytes. Moreover, M5 cytokines significantly upregulated the mRNA levels of TNF-α, IL-6, IL-1β, and IL-8. However, alantolactone attenuated the upregulation of these inflammatory cytokines. In addition, alantolactone was found to inhibit STAT3 phosphorylation and NF-κB p65 nuclear translocation in HaCaT keratinocytes. Furthermore, alantolactone treatment in mice significantly alleviated the severity of skin lesions (erythema, scaling and epidermal thickness, and inflammatory cell infiltration) and decreased the mRNA expression of inflammatory cytokines (e.g., TNF-α, IL-6, IL-1β, IL-8, IL-17A, and IL-23) in an IMQ-induced-like mouse model. Therefore, our new findings revealed that alantolactone alleviates psoriatic skin lesions by inhibiting inflammation, making it an attractive candidate for future development as an antipsoriatic agent.
- Alleviation of Collagen-Induced Arthritis by Crotonoside through Modulation of Dendritic Cell Differentiation and ActivationLin, Shih-Chao; Lin, Chi-Chien; Li, Shiming; Lin, Wan-Yi; Lehman, Caitlin W.; Bracci, Nicole R.; Tsai, Sen-Wei (MDPI, 2020-11-10)Crotonoside, a guanosine analog originally isolated from Croton tiglium, is reported to be a potent tyrosine kinase inhibitor with immunosuppressive effects on immune cells. Due to its potential immunotherapeutic effects, we aimed to evaluate the anti-arthritic activity of crotonoside and explore its immunomodulatory properties in alleviating the severity of arthritic symptoms. To this end, we implemented the treatment of crotonoside on collagen-induced arthritic (CIA) DBA/1 mice and investigated its underlying mechanisms towards pathogenic dendritic cells (DCs). Our results suggest that crotonoside treatment remarkably improved clinical arthritic symptoms in this CIA mouse model as indicated by decreased pro-inflammatory cytokine production in the serum and suppressed expression of co-stimulatory molecules, CD40, CD80, and MHC class II, on CD11c+ DCs from the CIA mouse spleens. Additionally, crotonoside treatment significantly reduced the infiltration of CD11c+ DCs into the synovial tissues. Our in vitro study further demonstrated that bone marrow-derived DCs (BMDCs) exhibited lower yield in numbers and expressed lower levels of CD40, CD80, and MHC-II when incubated with crotonoside. Furthermore, LPS-stimulated mature DCs exhibited limited capability to prime antigen-specific CD4+ and T-cell proliferation, cytokine secretions, and co-stimulatory molecule expressions when treated with crotonoside. Our pioneer study highlights the immunotherapeutic role of crotonoside in the alleviation of the CIA via modulation of pathogenic DCs, thus creating possible applications of crotonoside as an immunosuppressive agent that could be utilized and further explored in treating autoimmune disorders in the future.
- Atractylodin Suppresses TGF-β-Mediated Epithelial-Mesenchymal Transition in Alveolar Epithelial Cells and Attenuates Bleomycin-Induced Pulmonary Fibrosis in MiceChang, Kai-Wei; Zhang, Xiang; Lin, Shih-Chao; Lin, Yu-Chao; Li, Chia-Hsiang; Akhrymuk, Ivan V.; Lin, Sheng-Hao; Lin, Chi-Chien (MDPI, 2021-10-15)Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic change in alveolar epithelial cells and leads to the irreversible deterioration of pulmonary function. Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in type 2 lung epithelial cells contributes to excessive collagen deposition and plays an important role in IPF. Atractylodin (ATL) is a kind of herbal medicine that has been proven to protect intestinal inflammation and attenuate acute lung injury. Our study aimed to determine whether EMT played a crucial role in the pathogenesis of pulmonary fibrosis and whether EMT can be utilized as a therapeutic target by ATL treatment to mitigate IPF. To address this topic, we took two steps to investigate: 1. Utilization of anin vitro EMT model by treating alveolar epithelial cells (A549 cells) with TGF-β1 followed by ATL treatment for elucidating the underlying pathways, including Smad2/3 hyperphosphorylation, mitogen-activated protein kinase (MAPK) pathway overexpression, Snail and Slug upregulation, and loss of E-cadherin. Utilization of an in vivo lung injury model by treating bleomycin on mice followed by ATL treatment to demonstrate the therapeutic effectiveness, such as, less collagen deposition and lower E-cadherin expression. In conclusion, ATL attenuates TGF-β1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in mice.
- Dehydrated Human Amnion-Chorion Membrane Extracts Can Ameliorate Interstitial Cystitis in Rats by Down-regulating Inflammatory Cytokines and Protein Coding Genes: A Preclinical StudyYang, Che-Hsueh; Tung, Min-Che; Lin, Yi-Sheng; Hsu, Chao-Yu; Akhrymuk, Ivan; Tan, Kok-Tong; Ou, Yen-Chuan; Lin, Chi-Chien (MDPI, 2022-10-25)The study aimed to investigate the therapeutic impact of intravesical instillation of dehydrated human amnion-chorion membrane (HACM) extracts based on the primary pathological feature of interstitial cystitis (IC). We divided 15 female Sprague-Dawley rats into three groups: sham control, IC, and treatment group. IC was induced by 400-µL lipopolysaccharide (1 µg/µL), and it was replaced with normal saline in the sham control group. After IC induction, 300 µL dehydrated HACM extracts (3 mg/kg) were instilled into rats’ urinary bladder weekly for 3 weeks. General histology, inflammatory cytokines, NF-κB, oxidative markers, and western blots results were examined. The urothelial denudation, mast-cell infiltration, and tissues fibrosis were all ameliorated. The elevated TNF-α, IL-1β, IL-6, IL-8, and NF-κB were all down-regulated by dehydrated HACM extracts (p < 0.05). For reactive oxygen species, increased malondialdehyde, decreased superoxide dismutase, and decreased glutathione peroxidase were all reversed (p < 0.05). In apoptosis of IC, elevated Bax and suppressed Bcl-2 were improved (p < 0.05) after instillation. In fibrosis, dysregulated TGFβ/R-Smads/Snail was corrected by the instillation of dehydrated HACM (p < 0.05). In conclusion, dehydrated HACM extracts could be a powerful remedy in treating IC by reconstructing the damaged urothelium, reducing mast-cell infiltration and inflammatory reactions, and ameliorating fibrotic changes.
- Dendritic Cells and Antiphospholipid Syndrome: An Updated Systematic ReviewTang, Kuo-Tung; Chen, Hsin-Hua; Chen, Tzu-Ting; Bracci, Nicole R.; Lin, Chi-Chien (MDPI, 2021-08-09)Antiphospholipid syndrome (APS) is an autoimmune disease characterized by autoreactive B and T cells against β2-glycoprotein I (B2GPI), with vascular thrombosis or obstetrical complications. Dendritic cells (DCs) are crucial in the generation of autoimmunity. Here, we conducted a comprehensive systematic review on the relationship between DC and APS. We performed a literature search of PubMed as of 26 March 2021. A total of 33 articles were extracted. DCs are pivotal in inducing inflammatory responses and orchestrating adaptive immunity. DCs contribute to the local inflammation regarding vascular thrombosis or obstetrical complications. Both B2GPI and antiphospholipid antibodies (aPL) can promote antigen presentation by DCs and the generation or maintenance of autoimmunity. In addition, plasmacytoid DC activation is enhanced by aPL, thereby augmenting the inflammatory response. In line with these findings, DC modulation appears promising as a future treatment for APS. In conclusion, our review indicated the crucial role of DCs in the pathogenesis of APS. Deeper understanding of the complex relationship would help in developing new treatment strategies.
- Effect of the Chinese Herbal Medicine SS-1 on a Sjögren’s Syndrome-Like Disease in MiceWu, Po-Chang; Lin, Shih-Chao; Panny, Lauren; Chang, Yu-Kang; Lin, Chi-Chien; Tung, Yu-Tang; Chang, Hen-Hong (MDPI, 2021-06-07)Sjögren’s syndrome (SS) is an inflammatory autoimmune disease primarily affecting the exocrine glands; it has a major impact on patients’ lives. The Chinese herbal formula SS-1 is composed of Gan Lu Yin, Sang Ju Yin, and Xuefu Zhuyu decoction, which exerts anti-inflammatory, immunomodulatory, and antifibrotic effects. Our previous study demonstrated that SS-1 alleviates clinical SS. This study aimed to evaluate the efficacy and mechanism of the Chinese herbal formula SS-1 for salivary gland protein-induced experimental Sjögren’s syndrome (ESS). These results showed that ESS treatment with the Chinese herbal formula SS-1 (1500 mg/kg) significantly alleviated the severity of ESS. We found that SS-1 substantially improved saliva flow rates in SS mice and ameliorated lymphocytic infiltrations in submandibular glands. In addition, salivary gland protein-induced SS in mice treated with SS-1 significantly lowered proinflammatory cytokines (including IFN-γ, IL-6, and IL-17A) in mouse salivary glands and decreased serum anti-M3R autoantibody levels. In addition, we found that CD4+ T cells isolated from SS-1-treated SS mice significantly reduced the percentages of IFN-γ-producing CD4+ T cells (Th1) and IL-17A-producing CD4+ T cells (Th17). Our data show that SS-1 alleviates ESS through anti-inflammatory and immunomodulatory effects, which provides new insight into the clinical treatment of SS.
- Galangin ameliorates experimental autoimmune encephalomyelitis in mice via modulation of cellular immunityTan, Kok-Tong; Li, Shiming; Panny, Lauren; Lin, Chi-Chien; Lin, Shih-Chao (2021-03-23)Multiple sclerosis (MS) causes neurologic disabilities that effect musculature, sensory systems, and vision. This is largely due to demyelination of nerve fibers caused by chronic inflammation. Corticosteroid treatments ameliorate symptoms of MS, but do not successfully cure the disease itself. In the current study, the application of galangin, a phytochemical flavonoid extracted from the ginger family of Alpinis officinarum, on experimental autoimmune encephalomyelitis (EAE; mouse model for MS) was explored. This study investigated prophylactic and therapeutic activity of the drug and mechanisms by which it acts. The results revealed that galangin at 40 and 80 mg/kg could lower the incidence rate of MS, and alleviate clinical/pathological manifestations. Mice administered galangin presented with less limb paralysis, lower levels of inflammatory cell infiltrates, and decreased demyelination compared to vehicle controls. Levels of CD4(+)IFN gamma(+) (T(H)1) and CD4(+)IL-17A(+) (T(H)17) cells in the spinal cords of EAE mice administered galangin were reduced and both cell types were not capable of expansion. More surprisingly, galangin inhibited antigen presentation and cytokine production by dendritic cells (DC). Formation of cytokines like IL-6, IL-12, and IL-23 were significantly decreased due to galangin in co-culture models of DC and T-cells. Taken together, the data lead one to conclude that galangin could potentially be used as a potent immunoregulatory agent to alleviate clinical symptoms and reduce the prevalence of MS.
- Phloretin Ameliorates Testosterone-Induced Benign Prostatic Hyperplasia in Rats by Regulating the Inflammatory Response, Oxidative Stress and ApoptosisHsu, Chao Yu; Lin, Yi Sheng; Weng, Wei Chun; Panny, Lauren; Chen, Hsiang Lai; Tung, Min Che; Ou, Yen Chuan; Lin, Chi-Chien; Yang, Che Hsueh (MDPI, 2021-07-26)The inflammatory process is proposed to be one of the factors to benign prostatic enlargement (BPH), and this is the first study examining the anti-inflammatory ability of phloretin in treating rats with testosterone-induced BPH. BPH would be induced by testosterone (10 mg/kg/day testosterone subcutaneously for 28 days), and the other groups of rats were treated with phloretin 50 mg/kg/day or 100 mg/kg/day orally (phr50 or phr100 group) after induction. Prostate weight and prostate weight to body weight ratio were significantly reduced in the Phr100 group. Reduced dihydrotestosterone without interfering with 5α-reductase was observed in the phr100 group. In inflammatory proteins, reduced IL-6, IL-8, IL-17, NF-κB, and COX-2 were seen in the phr100 group. In reactive oxygen species, malondialdehyde was reduced, and superoxide dismutase and glutathione peroxidase were elevated in the phr100 group. In apoptotic assessment, elevated cleaved caspase-3 was observed in rats of the phr100 group. Enhanced pro-apoptotic Bax and reduced anti-apoptotic Bc1-2 could be seen in the phr100 group. In histological stains, markedly decreased glandular hyperplasia and proliferative cell nuclear antigen were observed with reduced expression in the phr100 group. Meanwhile, positive cells of terminal deoxynucleotidyl transferase dUTP nick end labeling were increased in the phr100 group. In conclusion, the treatment of phloretin 100 mg/kg/day could ameliorate testosterone-induced BPH.