Browsing by Author "Mason, William H."
Now showing 1 - 20 of 127
Results Per Page
Sort Options
- ACSYNT aerodynamic estimation: an examination and validation for use in conceptual designArledge, Thomas K. (Virginia Tech, 1993-05-27)The aerodynamic prediction methodology available in ACSYNT is examined through comparison with aircraft data for a variety of classes of configurations. The predictions are a synthesis of the best empirical procedures currently available. The present work presents selected results obtained from the comparison, and shows how the basic capability can be enhanced by user supplied adjustments to represent changes in technology levels when considering advanced aircraft designs. The predictions and basis for adjustments are described for a supersonic cruise vehicle, a large subsonic transport, a typical fighter, an attack aircraft, and a typical business jet.
- Active and Passive Flow Control over the Flight Deck of Small Naval VesselsShafer, Daniel Manfred (Virginia Tech, 2005-04-27)Helicopter operations in the vicinity of small naval surface vessels often require excessive pilot workload. Because of the unsteady flow field and large mean velocity gradients, the envelope for flight operations is limited. This experimental investigation uses a 1:144 scale model of the U.S. Navy destroyer DDG-81 to explore the problem. Both active and passive flow control techniques were used to improve the flow field in the helicopter's final decent onto the flight deck. Wind tunnel data was collected at a set of grid points over the ship's flight deck using a single component hotwire. Results show that the use of porous surfaces decreases the unsteadiness of the flow field. Further improvements are found by injecting air through these porous surfaces, causing a reduction in unsteadiness in the landing region of 6.6% at 0 degrees wind-over-deck (WOD) and 8.3% at 20 degrees WOD. Other passive configurations tested include fences placed around the hangar deck edges which move the unsteady shear layer away from the flight deck. Although these devices cause an increase in unsteadiness downstream of the edge of the fence when compared to the baseline, the reticulated foam fence caused an overall decrease in unsteadiness in the landing region of 12.1% at 20 degrees WOD.
- Active Flow Control of a Boundary Layer Ingesting Serpentine DiffuserHarrison, Neal A. (Virginia Tech, 2005-07-13)The use of serpentine boundary layer ingesting (BLI) diffusers offers a significant benefit to the performance of Blended Wing Body aircraft. However, the inherent diffuser geometry combined with a thick ingested boundary layer creates strong secondary flows that lead to severe flow distortion at the engine face, increasing the possibility of engine surge. This study investigated the use of enabling active flow control methods to reduce engine-face distortion. An ejector-pump based system of fluidic actuators was used to directly manage the diffuser secondary flows. This system was modeled computationally using a boundary condition jet modeling method, and tested in an ejector-driven wind tunnel facility. This facility is capable of simulating the high-altitude, high subsonic Mach number conditions representative of BWB cruise conditions, specifically a cruise Mach number of 0.85 at an altitude of 39,000 ft. The tunnel test section used for this experiment was designed, built, and tested as a validation tool for the computational methods. This process resulted in the creation of a system capable of efficiently investigating and testing the fundamental mechanisms of flow control in BLI serpentine diffusers at a minimum of time and expense. Results of the computational and wind tunnel analysis confirmed the large potential benefit of adopting fluidic actuators to control flow distortion in serpentine BLI inlets. Computational analysis showed a maximum 71% reduction in flow distortion at the engine face through the use of the Pyramid 1 ejector scheme, and a 68% reduction using the Circumferential ejector scheme. However, the flow control systems were also found to have a significant impact on flow swirl. The Pyramid 1 ejector scheme was found to increase AIP flow swirl by 64%, while the Circumferential ejector scheme reduced flow swirl by 30%. Computational analyses showed that this difference was the result of jet interaction. By keeping the jet flows separate and distinct, the diffuser secondary flows could be more efficiently managed. For this reason, the most practically effective flow control scheme was the Circumferential ejector scheme. Experimental results showed that the computational analysis slightly over-predicted flow distortion. However, the trends are accurately predicted despite slight variances in freestream Mach number between runs and a slightly lower tested altitude.
- Actuator-Work Concepts Applied to Morphing and Conventional Aerodynamic Control DevicesJohnston, Christopher Owen (Virginia Tech, 2003-11-14)The research presented in this thesis examines the use of an estimated "actuator work" value as a performance parameter for the comparison of various aerodynamic control device configurations. This estimated "actuator work," or practical work as it will be referred to as in this thesis, is based on the aerodynamic and structural resistance to a control surface deflection. It is meant to represent the actuator energy cost required to deflect a general configuration of conventional or unconventional control surface. Thin airfoil theory is used to predict the aerodynamic load distribution required for this work calculation. The details of applying thin airfoil theory to many different types of control surface arrangements are presented. Convenient equations for the aerodynamic load distributions and aerodynamic coefficients are obtained. Using the developed practical work equations, and considering only the aerodynamic load component, the practical work required for a given change in lift is compared between different control surface arrangements. For single control surface cases, it is found that a quadratic (morphing) trailing edge flap requires less practical work than a linear flap of the same size. As the angle of attack at which the change in lift occurs increases, the benefit of the quadratic flap becomes greater. For multiple control surface cases, it is necessary to determine the set of control deflections that require the minimum practical work for a given change in lift. For small values of the initial angle of attack, it is found that a two-segment quadratic trailing edge flap (MTE) requires more work than a two-segment linear flap (TETAB). But, above a small value of angle of attack, the MTE case becomes superior to the TETAB case. Similar results are found when a 1-DOF static aeroelastic model is included in the calculation. The minimum work control deflections for the aeroelastic cases are shown to be strongly dependent on the dynamic pressure.
- Addition of Features to an Existing MDO Model for ContainershipsDasgupta, Amlan (Virginia Tech, 2001-05-10)Traditionally, the "Design Spiral" is used for the design of ships. The design spiral endorses the concept that the design process is sequential and iterative. Though this procedure was very effective over the years, the current trend of engineering demands that more stress be put on the exploration of optimum design. With the advancement of computing technologies, the onus has shifted from finding better calculation schemes to formulating an economically viable design scheme. One of the objects of the FIRST project funded by MARITECH was to develop a computer tool to give the best ship design using optimization techniques. This was entrusted to the Department of Aerospace and Ocean Engineering at Virginia Polytechnic Institute and State University in Blacksburg, Virginia. A container ship was chosen as the test case. The problem was tackled from an owner's point of view. Hence, the required freight rate was chosen as the objective. To achieve that goal, the team developed a package that consists of three modules: optimization, geometric and a performance evaluation module. Though these modules are essentially independent, the user has control over an overall manager. He can change the initial value of design parameters, set bounds and vary constraint bounds as per his needs. Though he does not know what goes on behind the user interface, he still feels secure with the design process because he has overall control. This sense of security breaks down when he has access to limited variables and constraints. A prototype MDO tool is developed based on Microsoft's COM framework using ATL. With this design, the modules can be modified with minimum programming effort. The user interface gives the user flexibility to manipulate relevant parameters that affect the design. A geometric shape manipulation scheme is developed in which the hull form was generated by blending two hull forms. This MDO tool is used to design a container ship with the required freight rate as the objective to be minimized. It is noticed that without a structural constraint, the design tends towards one with maximum length and beam. This led to unreasonably large ratios of B/D and L/D. A B/D constraint is applied to the design to get a better structural design. Results with this constraint enabled have pointed in the direction of adding two other design variables. This constraint increases the depth of the ship. With the increase in depth, the center of gravity of the ship also rises decreasing the GM of the ship. This lowering of GM adversely affects the GM constraint. The number of tiers on deck (NTd) is made a design variable to enable the optimizer to have the flexibility of manipulating the cargo carrying capacity. It was noticed that the ship is unable to have a high NTd because of the violation of the GM constraint. Hence, ballast has also been added as a design variable to reduce the center of gravity of the ship increasing the GM of the ship. This feature enables the optimizer to carry greater cargo on deck improving the objective function. An effort is made to analyze the efficacy of the MDO tool by varying various parameters that affect the design. Technology factors have been introduced which give an insight on effect of key parameters. They also reflect on future design trends. Three evaluation tools: sensitivity analysis, alpha plots and restart option have been incorporated in the design process to gauge the results of optimization. The effect of another structural constraint L/D was also investigated. This constraint tends to bring down the overall length and is inconclusive in its results. Further analysis of this constraint is needed to draw usable conclusions. The linear response surface approximation was eliminated and the original stepwise discontinuous TEU capacity function is employed in the later examples. It was found that the minimum of the required fright rate occurred at the lower limits of length and beam on each TEU capacity platform. A systematic search of TEU plateaus in the vicinity of the primary optimum was necessary to define the secondary optimum
- Advances In Computational Fluid Dynamics: Turbulent Separated Flows And Transonic Potential FlowsNeel, Reece E. (Virginia Tech, 1997-06-06)Computational solutions are presented for flows ranging from incompressible viscous flows to inviscid transonic flows. The viscous flow problems are solved using the incompressible Navier-Stokes equations while the inviscid solutions are attained using the full potential equation. Results for the viscous flow problems focus on turbulence modeling when separation is present. The main focus for the inviscid results is the development of an unstructured solution algorithm. The subject dealing with turbulence modeling for separated flows is discussed first. Two different test cases are presented. The first flow is a low-speed converging-diverging duct with a rapid expansion, creating a large separated flow region. The second case is the flow around a stationary hydrofoil subject to small, oscillating hydrofoils. Both cases are computed first in a steady state environment, and then with unsteady flow conditions imposed. A special characteristic of the two problems being studied is the presence of strong adverse pressure gradients leading to flow detachment and separation. For the flows with separation, numerical solutions are obtained by solving the incompressible Navier-Stokes equations. These equations are solved in a time accurate manner using the method of artificial compressibility. The algorithm used is a finite volume, upwind differencing scheme based on flux-difference splitting of the convective terms. The Johnson and King turbulence model is employed for modeling the turbulent flow. Modifications to the Johnson and King turbulence model are also suggested. These changes to the model focus mainly on the normal stress production of energy and the strong adverse pressure gradient associated with separating flows. The performance of the Johnson and King model and its modifications, along with the Baldwin-Lomax model, are presented in the results. The modifications had an impact on moving the flow detachment location further downstream, and increased the sensitivity of the boundary layer profile to unsteady flow conditions. Following this discussion is the numerical solution of the full potential equation. The full potential equation assumes inviscid, irrotational flow and can be applied to problems where viscous effects are small compared to the inviscid flow field and weak normal shocks. The development of a code is presented which solves the full potential equation in a finite volume, cell centered formulation. The unique feature about this code is that solutions are attained on unstructured grids. Solutions are computed in either two or three dimensions. The grid has the flexibility of being made up of tetrahedra, hexahedra, or prisms. The flow regime spans from low subsonic speeds up to transonic flows. For transonic problems, the density is upwinded using a density biasing technique. If lift is being produced, the Kutta-Joukowski condition is enforced for circulation. An implicit algorithm is employed based upon the Generalized Minimum Residual method. To accelerate convergence, the Generalized Minimum Residual method is preconditioned. These and other problems associated with solving the full potential equation on an unstructured mesh are discussed. Results are presented for subsonic and transonic flows over bumps, airfoils, and wings to demonstrate the unstructured algorithm presented here.
- Aerodynamic Design Sensitivities on an Unstructured Mesh Using the Navier-Stokes Equations and a Discrete Adjoint FormulationNielsen, Eric John (Virginia Tech, 1998-11-16)A discrete adjoint method is developed and demonstrated for aerodynamic design optimization on unstructured grids. The governing equations are the three-dimensional Reynolds-averaged Navier-Stokes equations coupled with a one-equation turbulence model. A discussion of the numerical implementation of the flow and adjoint equations is presented. Both compressible and incompressible solvers are differentiated, and the accuracy of the sensitivity derivatives is verified by comparing with gradients obtained using finite differences and a complex-variable approach. Several simplifying approximations to the complete linearization of the residual are also presented. A first-order approximation to the dependent variables is implemented in the adjoint and design equations, and the effect of a "frozen" eddy viscosity and neglecting mesh sensitivity terms is also examined. The resulting derivatives from these approximations are all shown to be inaccurate and often of incorrect sign. However, a partially-converged adjoint solution is shown to be sufficient for computing accurate sensitivity derivatives, yielding a potentially large cost savings in the design process. The convergence rate of the adjoint solver is compared to that of the flow solver. For inviscid adjoint solutions, the cost is roughly one to four times that of a flow solution, whereas for turbulent computations, this ratio can reach as high as ten. Sample optimizations are performed for inviscid and turbulent transonic flows over an ONERA M6 wing, and drag reductions are demonstrated.
- Aerodynamic pitch-up of cranked arrow wings: estimation, trim, and configuration designBenoliel, Alexander M. (Virginia Tech, 1994-05-06)Low aspect ratio, highly-swept cranked arrow wing planforms are often proposed for high-speed civil transports. These wing planforms offer low supersonic drag without suffering greatly from low lift/drag ratios in low-speed flight. They can, however, suffer from pitch-up at modest angles of attack (as low as 5°) during low-speed flight due to leading edge vortex influence, flow separation and vortex breakdown. The work presented here describes an investigation conducted to study past research on the longitudinal aerodynamic characteristics of highly-swept cranked wing planforms, the development of a new method to estimate pitch-up of these configurations, and the applications of this new method to the analysis of tail designs for trim at high lift coefficients. The survey of past research placed emphasis on 1) understanding the problem of pitch-up, 2) ascertaining the effects of leading and trailing edge flaps, and 3) determining the benefits and shortfalls of tail, tailless, and canard configurations. The estimation method used a vortex lattice method to calculate the inviscid flow solution. Then, the results were adjusted to account for flow separation on the outboard wing section by imposing a limit on the equivalent 2-D sectional lift coefficient. The new method offered a means of making low cost estimates of the nonlinear pitching moment characteristics of slender, cranked arrow wing configurations with increased accuracy compared to conventional linear methods. Numerous comparisons with data are included. The new method was applied to analyze the trim requirement of slender wing designs generated by an aircraft configuration optimization and design program. The effects of trailing edge flaps and horizontal tail on the trimmed lift coefficient was demonstrated. Finally, recommendations were made to the application of this new method to multidisciplinary design optimization methods.
- Aerodynamic Properties of the Inboard Wing ConceptOrr, Matthew William (Virginia Tech, 2003-12-19)This investigation examines a new concept in airliner configurations from an experimental aerodynamics point of view. The concept proposes mounting the fuselages at the tips of a low aspect ratio wing. The motivation for this configuration is to provide an increase in the number of passengers carried with no increase in span over conventional designs. An additional motivation is the change in the wake flow of the wing, due to the fuselages and vertical tails, which may reduce the effect of the trailing vortex on trailing aircraft. During this investigation, two models of different scales were used to measure the aerodynamic forces and moments of the inboard wing configuration. The tests were conducted in the Virginia Tech 6X6 ft. wind tunnel using a six-component strain gauge balance. The Reynolds number based on chord for the small model was 465,000 and for the large model was 1,225,000. For reference, tests were also conducted with a plain wing having the same span as the full configuration. The L/D values found for this non-optimized configuration were modest compared to those for conventional transports. The vertical tails were shown to act as winglets, reducing drag and increasing L/D. These results suggest areas for substantial improvement in aerodynamic performance of the configuration.
- Aeroelasticity of Morphing Wings Using Neural NetworksNatarajan, Anand (Virginia Tech, 2002-07-03)In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. A time marching technique is developed for solving linear structural dynamic problems with time-varying parameters. This time-marching technique borrows from the concept of Time-Finite Elements in the sense that for each time interval considered in the time-marching, an analytical solution is obtained. The analytical solution for each time interval is in the form of a matrix exponential and hence this technique is termed as Matrix Exponential time marching. Using this time marching technique, Artificial Neural Networks can be trained to represent the dynamic behavior of any linearly time varying system. In order to extend this methodology to dynamic aeroelasticity, it is also necessary to model the unsteady aerodynamic loads over an airfoil. Accordingly, an unsteady aerodynamic panel method is developed using a distributed set of doublet panels over the surface of the airfoil and along its wake. When the aerodynamic loads predicted by this panel method are made available to the Matrix Exponential time marching scheme for every time interval, a dynamic aeroelastic solver for a time varying aeroelastic system is obtained. This solver is now used to train an array of neural networks to represent the response of this two dimensional aeroelastic system with a time varying torsional stiffness. These neural networks are developed into a control system for flutter suppression. Another type of aeroelastic problem of an adaptive structure that is investigated here is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to represent the aerodynamic loading over the bump. A second neural network is trained for calculating the actuator loads, bump displacement and lift, drag forces over the airfoil using the finite element solver, ANSYS and the previously trained neural network. This non-linear aeroelastic model of the deforming bump on an airfoil surface using neural networks can serve as a fore-runner for other non-linear aeroelastic problems. This work enhances the traditional aeroelastic modeling by introducing time varying parameters in the differential equations of motion. It investigates the calculation of non-conservative aerodynamic loads on morphing contours and the resulting structural deformation for non-linear aeroelastic problems through the use of neural networks. Geometric modeling of morphing contours is also addressed.
- Aircraft Multidisciplinary Design Optimization using Design of Experiments Theory and Response Surface Modeling MethodsGiunta, Anthony A. (Virginia Tech, 1997-05-01)Design engineers often employ numerical optimization techniques to assist in the evaluation and comparison of new aircraft configurations. While the use of numerical optimization methods is largely successful, the presence of numerical noise in realistic engineering optimization problems often inhibits the use of many gradient-based optimization techniques. Numerical noise causes inaccurate gradient calculations which in turn slows or prevents convergence during optimization. The problems created by numerical noise are particularly acute in aircraft design applications where a single aerodynamic or structural analysis of a realistic aircraft configuration may require tens of CPU hours on a supercomputer. The computational expense of the analyses coupled with the convergence difficulties created by numerical noise are significant obstacles to performing aircraft multidisciplinary design optimization. To address these issues, a procedure has been developed to create two types of noise-free mathematical models for use in aircraft optimization studies. These two methods use elements of statistical analysis and the overall procedure for using the methods is made computationally affordable by the application of parallel computing techniques. The first modeling method, which has been the primary focus of this work, employs classical statistical techniques in response surface modeling and least squares surface fitting to yield polynomial approximation models. The second method, in which only a preliminary investigation has been performed, uses Bayesian statistics and an adaptation of the Kriging process in Geostatistics to create exponential function-based interpolating models. The particular application of this research involves modeling the subsonic and supersonic aerodynamic performance of high-speed civil transport (HSCT) aircraft configurations. The aerodynamic models created using the two methods outlined above are employed in HSCT optimization studies so that the detrimental effects of numerical noise are reduced or eliminated during optimization. Results from sample HSCT optimization studies involving five and ten variables are presented here to demonstrate the utility of the two modeling methods.
- Algorithmic Modifications to a Multidisciplinary Design Optimization Model of ContainershipsGanguly, Sandipan (Virginia Tech, 2004-05-06)When designing a ship, a designer often begins with "an idea" of what the ship might look like and what specifications the ship should meet. The multidisciplinary design optimization model is a tool that combines an analysis and an optimization process and uses a measure of merit to obtain what it infers to be the best design. All that the designer has to know is the range of values of certain design variables that confine the design within a lower and an upper bound. The designer then feeds the MDO model with any arbitrary design within the bounds and the model searches for the best design that minimizes or maximizes a measure of merit and also meets a set of structural and stability requirements. The model is multidisciplinary because the analysis process, which calculates the measure of merit and other performance parameters, can be a combination of sub-processes used in various fields of engineering. The optimization process can also be a variety of mathematical programming techniques depending on the type of the design problem. The container ship design problem is a combination of discreet and continuous sub-problems. But to avail the advantages of gradient-based optimization algorithms, the design problem is molded into a fully continuous problem. The efficiency and effectiveness with which an optimization process achieves the best design depends on how well the design problem is posed for the optimizer and how well that particular optimization algorithm tackles the type of design problems posed before it. This led the author to investigate the details of the analysis and the optimization process within the MDO model and make modifications to each of the processes, so that the two become more compatible towards achieving a better final design. Modifications made within the optimization algorithm were then used to develop a generalized modification method that can be used to improve any gradient-based optimization algorithm.
- Analysis and Design of a Morphing Wing Tip using Multicellular Flexible Matrix Composite Adaptive SkinsHinshaw, Tyler (Virginia Tech, 2009-07-01)The material presented in this thesis uses concepts of the finite element and doublet panel methods to develop a structural-aerodynamic coupled mathematical model for the analysis of a morphing wing tip composed of smart materials. Much research is currently being performed within many facets of engineering on the use of smart or intelligent materials. Examples of the beneficial characteristics of smart materials might include altering a structure's mechanical properties, controlling its dynamic response(s) and sensing flaws that might progressively become detrimental to the structure. This thesis describes a bio-inspired adaptive structure that will be used in morphing an aircraft's wing tip. The actuation system is derived from individual flexible matrix composite tube actuators embedded in a matrix medium that when pressurized, radical structural shape change is possible. A driving force behind this research, as with any morphing wing related studies, is to expand the limitations of an aircraft's mission, usually constrained by the wing design. Rather than deploying current methods of achieving certain flight characteristics, changing the shape of a wing greatly increases the flight envelope. This thesis gives some insight as to the structural capability and limitations using current numerical methods to model a morphing wing in a flow.
- An Application of Anti-Optimization in the Process of Validating Aerodynamic CodesCruz, Juan Ramón (Virginia Tech, 2003-04-04)An investigation was conducted to assess the usefulness of anti-optimization in the process of validating of aerodynamic codes. Anti-optimization is defined here as the intentional search for regions where the computational and experimental results disagree. Maximizing such disagreements can be a useful tool in uncovering errors and/or weaknesses in both analyses and experiments. The codes chosen for this investigation were an airfoil code and a lifting line code used together as an analysis to predict three-dimensional wing aerodynamic coefficients. The parameter of interest was the maximum lift coefficient of the three-dimensional wing, CL max. The test domain encompassed Mach numbers from 0.3 to 0.8, and Reynolds numbers from 25,000 to 250,000. A simple rectangular wing was designed for the experiment. A wind tunnel model of this wing was built and tested in the NASA Langley Transonic Dynamics Tunnel. Selection of the test conditions (i.e., Mach and Reynolds numbers) were made by applying the techniques of response surface methodology and considerations involving the predicted experimental uncertainty. The test was planned and executed in two phases. In the first phase runs were conducted at the pre-planned test conditions. Based on these results additional runs were conducted in areas where significant differences in CL max were observed between the computational results and the experiment — in essence applying the concept of anti-optimization. These additional runs were used to verify the differences in CL max and assess the extent of the region where these differences occurred. The results of the experiment showed that the analysis was capable of predicting CL max to within 0.05 over most of the test domain. The application of anti-optimization succeeded in identifying a region where the computational and experimental values of CL max differed by more than 0.05, demonstrating the usefulness of anti-optimization in process of validating aerodynamic codes. This region was centered at a Mach number of 0.55 and a Reynolds number of 34,000. Including considerations of the uncertainties in the computational and experimental results confirmed that the disagreement was real and not an artifact of the uncertainties.
- An Approach to Incorporate Additive Manufacturing and Rapid Prototype Testing for Aircraft Conceptual Design to Improve MDO EffectivenessFriedman, Alex Matthew (Virginia Tech, 2015-06-19)The primary objectives of this work are two-fold. First, additive manufacturing (AM) and rapid prototype (RP) testing are evaluated for use in production of a wind tunnel (WT) models. Second, an approach was developed to incorporate stability and control (SandC) WT data into aircraft conceptual design multidisciplinary design optimization (MDO). Both objectives are evaluated in terms of data quality, time, and cost. FDM(TM) and PolyJet AM processes were used for model production at low cost and time. Several models from a representative tailless configuration, ICE 101, were printed and evaluated for strength, cost and time of production. Furthermore, a NACA 0012 model with 20% chord flap was manufactured. Both models were tested in the Virginia Tech (VT) Open-Jet WT for force and moment acquisition. A 1/15th scale ICE 101 model was prepared for manufacturing, but limits of FDM(TM) technology were identified for production. An approach using WT data was adapted from traditional surrogate-based optimization (SBO), which uses computational fluid dynamics (CFD) for data generation. Split-plot experimental designs were developed for analysis of the WT SBO strategy using historical data and for WT testing of the NACA 0012. Limitations of the VT Open-Jet WT resulted in a process that was not fully effective for a MDO environment. However, resolution of ICE 101 AM challenges and higher quality data from a closed-section WT should result in a fully effective approach to incorporate AM and RP testing in an aircraft conceptual design MDO.
- Assessment of RANS Turbulence Models for Strut-Wing JunctionsKnight, Kyle Cohn Davis (Virginia Tech, 2011-02-02)Multidisciplinary Design Optimization (MDO) studies show the Strut/Truss Braced Wing (SBW/TBW) concept has the potential to save a significant amount of fuel over conventional designs. For the SBW/TBW concept to achieve these reductions, the interference drag at the wing strut juncture must be small compared to other drag sources. Computational Fluid Dynamics (CFD) studies have concluded the interference drag is small enough for the TBW concept to be practical. However, the turbulence models used in these studies have not been validated for transonic, high Reynolds number, junction flows. This study intends to assess turbulence models by comparing drag and surface streamlines obtained from experiment and CFD. The test model is a NACA 0012 fin at Mach number of 0.75 and a Reynolds number of 6 million with varying angle of attack. The CFD analysis includes both the fin and tunnel test section. The main turbulence model tested is the k-w Shear Stress Transport model. The fin is tested at different Mach numbers and inlet conditions to account for experimental variations. The study shows the CFD over predicts separation. The reasons for this discrepancy is likely the turbulence models employed.
- A Basic Three-Dimensional Turbulent Boundary Layer Experiment To Test Second-Moment Closure ModelsSadek, Shereef Aly (Virginia Tech, 2008-09-10)In this work, a three-dimensional turbulent boundary layer experiment was set up with alternating stream-wise and span-wise pressure gradients. The pressure gradients are generated as a result of the test section wavy side wall shape. Each side had six sine waves with a trough to peak magnitude to wavelength ratio of 0.25. Boundary layer control was used so that the flow over the side walls remains attached. The mean flow velocity components, static and total pressures were measured at six plane along the stream-wise direction. The alternating mean span-wise and stream-wise pressure gradients created alternating stream-wise and span-wise vorticity fluxes, respectively, along the test section. As the flow developed downstream the vorticity created at the tunnel floor and ceiling diffused away from the wall. The vorticity components in the stream-wise and span-wise directions are strengthened due to stretching and tilting terms in the vorticity transport equations. The positive-z half of the test section contains large areas that generate positive vorticity flux in the trough region and smaller areas generating negative vorticity around the wave peak. The opposite is true for the negative-z half of the test-section. This results in a large positive stream-wise vorticity in the positive-z half and negative stream-wise vorticity in the negative-z half of the test-section. The smaller regions of opposite sign vorticity in each half tend to mix the flow such that as they diffuse away from the wall, the turbulent stresses are more uniform. Turbulent fluctuating velocity components were measured using Laser Doppler Velocimetery. Mean velocities as well as Reynolds stresses and triple velocity component correlations were measured at thirty stations along the last wave in the test section. Profiles at the center of the test section showed three dimensionality, but exhibited high turbulence intensities in the outer layer. Profiles off the test section centerline are highly three dimensional with multiple peaks in the normal stress profiles. The flow also reaches a state where all the normal stresses have equal magnitudes while the shear stresses are non-zero. Flow angles, flow gradient angles and shear stress angles show very large differences between wall values and outer layer vlaues. The shear stress angle lagged the flow gradient angle indicating non-equilibrium. A turbulent kinetic energy transport budget is performed for all profiles and the turbulence kinetic energy dissipation rate is estimated. Spectral measurements were also made and an independent estimate of the kinetic energy dissipation rate is made. These estimates agree very well with those estimates made by balancing the turbulence kinetic energy transport equation. Multiple turbulent diffusion models are compared to measured quantities. The models varied in agreement with experimental data. However, fair agreement with turbulence kinetic energy turbulent diffusion is observed. A model for the dissipation rate tensor anisotropy is used to extract estimates of the pressure-strain tensor from the Reynolds stress transport equations. The pressure-strain estimates are compared with some of the models in the literature. The comparison showed poor agreement with estimated pressure-strain values extracted from experimental data. A tentative model for the turbulent Reynolds shear stress angle is developed that captures the shear stress angle near wall behavior to a very good extent. The model contains one constant that is related to mean flow variables. However, the developed expression needs modification so that the prediction is improved along the entire boundary layer thickness.
- A CFD/CSD Interaction Methodology for Aircraft WingsBhardwaj, Manoj K. (Virginia Tech, 1997-09-15)With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural dynamics (CSD)analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code)and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as a part of this research). The results obtained from the present study are compared with those available from an experimental study conducted at NASA Langley Research Center and a study conducted at NASA Ames Research Center using ENSAERO and modal superposition. The results compare well with experimental data. In addition, parallel computing power is used to investigate parallel static aeroelastic analysis because obtaining an aeroelastic solution using CFD/CSD methods is computationally intensive. A parallel finite element wing-box code is developed and coupled with an existing parallel Euler code to perform static aeroelastic analysis. A typical wing-body configuration is used to investigate the applicability of parallel computing to this analysis. Performance of the parallel aeroelastic analysis is shown to be poor; however with advances being made in the arena of parallel computing, there is definitely a need to continue research in this area.
- Clean Wing Airframe Noise Modeling for Multidisciplinary Design and OptimizationHosder, Serhat (Virginia Tech, 2004-07-29)A new noise metric has been developed that may be used for optimization problems involving aerodynamic noise from a clean wing. The modeling approach uses a classical trailing edge noise theory as the starting point. The final form of the noise metric includes characteristic velocity and length scales that are obtained from three-dimensional, steady, RANS simulations with a two- equation k-omega turbulence model. The noise metric is not the absolute value of the noise intensity, but an accurate relative noise measure as shown in the validation studies. One of the unique features of the new noise metric is the modeling of the length scale, which is directly related to the turbulent structure of the flow at the trailing edge. The proposed noise metric model has been formulated so that it can capture the effect of different design variables on the clean wing airframe noise such as the aircraft speed, lift coefficient, and wing geometry. It can also capture three-dimensional effects which become important at high lift coefficients, since the characteristic velocity and the length scales are allowed to vary along the span of the wing. Noise metric validation was performed with seven test cases that were selected from a two-dimensional NACA 0012 experimental database. The agreement between the experiment and the predictions obtained with the new noise metric was very good at various speeds, angles of attack, and Reynolds Number, which showed that the noise metric is capable of capturing the variations in the trailing edge noise as a relative noise measure when different flow conditions and parameters are changed. Parametric studies were performed to investigate the effect of different design variables on the noise metric. Two-dimensional parametric studies were done using two symmetric NACA four-digit airfoils (NACA 0012 and NACA 0009) and two supercritical (SC(2)-0710 and SC(2)-0714) airfoils. The three-dimensional studies were performed with two versions of a conventional transport wing at realistic approach conditions. The twist distribution of the baseline wing was changed to obtain a modified wing which was used to investigate the effect of the twist on the trailing edge noise. An example study with NACA 0012 and NACA 0009 airfoils demonstrated a reduction in the trailing edge noise by decreasing the thickness ratio and the lift coefficient, while increasing the chord length to keep the same lift at a constant speed. Both two- and three-dimensional studies demonstrated that the trailing edge noise remains almost constant at low lift coefficients and gets larger at higher lift values. The increase in the noise metric can be dramatic when there is separation on the wing. Three-dimensional effects observed in the wing cases indicate the importance of calculating the noise metric with a characteristic velocity and length scale that vary along the span. The twist change does not have a significant effect on the noise at low lift coefficients, however it may give significant noise reduction at higher lift values. The results obtained in this study show the importance of the lift coefficient on the airframe noise of a clean wing and favors having a larger wing area to reduce the lift coefficient for minimizing the noise. The results also point to the fact that the noise reduction studies should be performed in a multidisciplinary design and optimization framework, since many of the parameters that change the trailing edge noise also affect the other aircraft design requirements. It's hoped that the noise metric developed here can aid in such multidisciplinary design and optimization studies.
- A Coarse Grained Parallel Variable-Complexity Multidisciplinary Optimization ParadigmBurgee, Susan L.; Giunta, Anthony A.; Balabanov, Vladimir; Grossman, Bernard M.; Mason, William H.; Narducci, Robert; Haftka, Raphael T.; Watson, Layne T. (Department of Computer Science, Virginia Polytechnic Institute & State University, 1995-10-01)Modern aerospace vehicle design requires the interaction of multiple discipines, traditionally processed in a sequential order. Multidisciplinary optimization (MDO), a formal methodology for the integration of these disciplines, is evolving towards methods capable of replacing the traditional sequential methodology of aerospace vehicle design by concurrent algorithms, with both an overall gain in product performance and a decrease in design time. A parallel MDO paradigm using variable-complexity modeling and multipoint response surface approximations is presented here for the particular instance of the design of a high speed civil transport (HSCT). This paradigm interleaves the disciplines at one level of complexity, and processes them hierarchically at another level of complexity, achieving parallelism within disciplines, rather than across disciplines. A master-slave paradigm manages a coarse grained parallelism of the analysis and optimization codes required by the disciplines showing reasonable speedups and efficiencies on an Intel Paragon.