Browsing by Author "McPherson, Sean"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- An Analysis of Radio Frequency Transfer Learning BehaviorWong, Lauren J.; Muller, Braeden; McPherson, Sean; Michaels, Alan J. (MDPI, 2024-06-03)Transfer learning (TL) techniques, which leverage prior knowledge gained from data with different distributions to achieve higher performance and reduced training time, are often used in computer vision (CV) and natural language processing (NLP), but have yet to be fully utilized in the field of radio frequency machine learning (RFML). This work systematically evaluates how the training domain and task, characterized by the transmitter (Tx)/receiver (Rx) hardware and channel environment, impact radio frequency (RF) TL performance for example automatic modulation classification (AMC) and specific emitter identification (SEI) use-cases. Through exhaustive experimentation using carefully curated synthetic and captured datasets with varying signal types, channel types, signal to noise ratios (SNRs), carrier/center frequencys (CFs), frequency offsets (FOs), and Tx and Rx devices, actionable and generalized conclusions are drawn regarding how best to use RF TL techniques for domain adaptation and sequential learning. Consistent with trends identified in other modalities, our results show that RF TL performance is highly dependent on the similarity between the source and target domains/tasks, but also on the relative difficulty of the source and target domains/tasks. Results also discuss the impacts of channel environment and hardware variations on RF TL performance and compare RF TL performance using head re-training and model fine-tuning methods.
- Assessing the Value of Transfer Learning Metrics for Radio Frequency Domain AdaptationWong, Lauren J.; Muller, Braeden P.; McPherson, Sean; Michaels, Alan J. (MDPI, 2024-07-25)The use of transfer learning (TL) techniques has become common practice in fields such as computer vision (CV) and natural language processing (NLP). Leveraging prior knowledge gained from data with different distributions, TL offers higher performance and reduced training time, but has yet to be fully utilized in applications of machine learning (ML) and deep learning (DL) techniques and applications related to wireless communications, a field loosely termed radio frequency machine learning (RFML). This work examines whether existing transferability metrics, used in other modalities, might be useful in the context of RFML. Results show that the two existing metrics tested, Log Expected Empirical Prediction (LEEP) and Logarithm of Maximum Evidence (LogME), correlate well with post-transfer accuracy and can therefore be used to select source models for radio frequency (RF) domain adaptation and to predict post-transfer accuracy.