Assessing the Value of Transfer Learning Metrics for Radio Frequency Domain Adaptation

TR Number

Date

2024-07-25

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

The use of transfer learning (TL) techniques has become common practice in fields such as computer vision (CV) and natural language processing (NLP). Leveraging prior knowledge gained from data with different distributions, TL offers higher performance and reduced training time, but has yet to be fully utilized in applications of machine learning (ML) and deep learning (DL) techniques and applications related to wireless communications, a field loosely termed radio frequency machine learning (RFML). This work examines whether existing transferability metrics, used in other modalities, might be useful in the context of RFML. Results show that the two existing metrics tested, Log Expected Empirical Prediction (LEEP) and Logarithm of Maximum Evidence (LogME), correlate well with post-transfer accuracy and can therefore be used to select source models for radio frequency (RF) domain adaptation and to predict post-transfer accuracy.

Description

Keywords

machine learning, deep learning, transfer learning, domain adaptation, radio frequency machine learning

Citation

Wong, L.J.; Muller, B.P.; McPherson, S.; Michaels, A.J. Assessing the Value of Transfer Learning Metrics for Radio Frequency Domain Adaptation. Mach. Learn. Knowl. Extr. 2024, 6, 1699-1719.