Browsing by Author "Moen, Cristopher D."
Now showing 1 - 20 of 71
Results Per Page
Sort Options
- 3D + Time Reconstruction: Designing Optimal Camera ParametersHelsel, Michelle; Salomon, Abraham Lama; Moen, Cristopher D. (2015-08-01)Three dimensional plus time reconstructions are an emerging concept in the civil engineering industry. The application possibilities are continuing to develop, resulting in an expansive range of projects. Proper image based modeling should utilize different camera parameters depending on the individual application. Currently, research examining the optimal camera settings for 3D reconstruction quality is limited. Knowing the ideal camera parameters and how each parameter will affect the modeling utilized for image reconstruction settings will improve modeling quality of 3D reconstructions. This paper examines the effective methods for improving reconstruction features based on picture quality. Camera settings tested include depth of field, shutter speed, ISO light sensitivity, resolution, and the number of pictures taken to be utilized in the 3D reconstruction. The variables also incorporate changes in lighting types, as well as material surface reflections. Distinct trends can be identified within the data set with respect to the mentioned variables.
- Acceptance Procedures for New and Quality Control Procedures for Existing Types of Corrosion-Resistant Reinforcing SteelStephen R. Sharp; Larry J. Lundy; Harikrishnan Nair; Moen, Cristopher D.; Josiah B. Johnson; Sarver, Brian E. (Virginia Center for Transportation Innovation and Research, 2011-06-01)As the Virginia Department of Transportation (VDOT) continues to move forward with implementing the use of corrosion-resistant reinforcing (CRR) bars, it is important for VDOT to have a means of characterizing the candidate bars as well as ensuring that the quality of approved CRR bars is preserved. This is vital to ensure the bars respond physically in a manner that is consistent with VDOT's expectations. The purpose of this study was to provide VDOT's Materials Division with a method/specification for evaluating CRR bars. The study determined that visual assessment cannot be relied on to determine bar type. Further, steel fabricator markings cannot be relied on to identify the type of steel. However, when questions arise regarding the identification of bars, magnetic sorting provides a quick and easy method for differentiating between magnetic and nonmagnetic alloys. If more quantitative results are required, X-ray fluorescence provides a practical and much-needed method for positively identifying bars. Physically, the bars differ among producers. Relative rib area should be monitored as it also varies among producers. Further, alloying changes not only the corrosion resistance but also other important properties. The results of uniaxial tensile tests showed that the stress-strain behavior, elongation, and reduction in cross-section upon fracture could vary significantly for different CRR alloys. Therefore, mechanical testing, in addition to corrosion testing, of CRR is necessary to identify the most cost-effective bars with acceptable properties. Finally, the study determined that quality control measures need to be established to ensure VDOT receives the corrosion protection it needs. Further, care should be taken when relying upon international standards for acceptance criteria. The report recommends that VDOT's Materials Division implement the set of test methods provided in the appendices of this report as Virginia Test Methods for CRR acceptance criteria. To simplify the implementation of CRR in Virginia and elsewhere, VDOT's Materials Division should work with the American Association of State Highway and Transportation Officials to develop a single specification for the testing and acceptance of CRR. VDOT's Materials Division should also investigate retrofitting the uniaxial tensile test equipment with a non-contact extensometer to guarantee that stress vs. strain measurements of CRR can be made and ensure the yield strength is determined
- Analysis of the AASHTO LFRD Horizontal Shear Strength EquationLang, Maria Weisner (Virginia Tech, 2011-09-08)The composite action of a bridge deck and girder is essential to the optimization of the superstructure. The transfer of forces in the deck to the girders is done across a shear interface between the two elements. The transfer occurs through the cohesion of the concrete at the interface and then through the shear reinforcement across the interface. Adequate shear strength is essential to the success of the superstructure. A collection of 537 horizontal shear tests comprised the database for the study of various concrete types and interface surface treatments. The predicted horizontal shear strength calculated from the AASHTO LFRD bridge design code was compared to the measured shear strength. The professional bias was computed for each specimen. The professional biases, standard deviations, and coefficients of variation for each category were calculated. The material properties factor along with fabrication factor was researched. The loading factors were researched and calculated for use in calculating the reliability index. The final step was to compute the reliability index for each category. The process was repeated to learn the reliability of the equation proposed by Wallenfelsz. The results showed that the reliability index for the AASHTO LRFD horizontal shear strength equation wash much lower than the desired target reliability index of 3.5. The reliability index for the Wallenfelsz equation was higher but still not close to the target reliability index.
- Assessment of Analytical Procedures for Designing Metal Buildings for Wind Drift ServiceabilityBajwa, Maninder Singh (Virginia Tech, 2010-08-03)While designing metal buildings for wind drift, for simplicity of analysis and design, connection at base of column is considered as pinned which provides no rotational restraint. The actual behavior of the connection however, is partially rigid, that provides some rotational stiffness even in case of single row of bolts. Moreover, using a two-dimensional (planar) structural model for analysis ignores any load distribution provided by roof and wall sheeting. Simulation of true behavior of base connection and diaphragm stiffness can substantially reduce drift caused due to lateral forces thereby lessening the conservatism in traditional design practices. This thesis provides results obtained from full-scale experimental testing and analytical study for a metal building. A full scale load test was conducted to quantify the lateral stiffness of an existing metal building. A static lateral load, consistent in magnitude with the building's design wind pressure, was applied to the knee of a primary frame, and the resulting lateral displacements and column-base rotations for all primary frames were measured. The test procedure was repeated at several locations. The experimentally obtained results were then validated using two-dimensional and three-dimensional analytical models. The three-dimensional models explicitly simulated the primary and secondary framing, roof and wall diaphragms, and column-base stiffness. A couple of approaches have been proposed to model column-base plate connection varying in complexity and accuracy. Once validated, the FE model is utilized to quantify the relative stiffness contributions of the metal building system components to lateral drift. While performing analysis some other parameters were also studied. These consisted of effect of base plate thickness and length of anchor bolts on column-base rigidity. Also, effect of including shear deformations and considering the haunch (column-rafter junction) as rigid were studied. Another small but important part of the paper is comparison of wind pressures obtained using different procedure of ASCE 7-05 with database assisted design pressures. Once these parameters are quantified practical engineering guidelines are developed to incorporate the influence of secondary framing, roof diaphragms, wall cladding, and column-base stiffness and wind loads in metal building design.
- Behavior of Post-Tensioning Systems Subjected to Inelastic Cyclic LoadingBruce, Trevor Louis (Virginia Tech, 2014-06-24)Post-tensioning (PT) strands have been employed in a number of self-centering seismic force resisting systems as part of the restoring force mechanism which virtually eliminates residual building drifts following seismic loading. As a result of the PT strands large elastic deformation capability, they have been proven to work efficiently in these types of systems. Although typically designed to stay elastic during design basis earthquake events, strands may experience inelastic cyclic loading during extreme earthquakes. Furthermore, the yielding and fracture behavior of PT strand systems is central to the collapse behavior of self-centering systems. The loading conditions to which PT strands are typically subjected in prestressed/post-tensioned concrete applications are vastly dissimilar, and only limited research has explored the behavior of PT strands as subjected to inelastic cyclic loading. The testing program conducted to characterize the behavior of PT strand systems as they might be applied in self-centering applications incorporated more than fifty tests, including monotonic and cyclic tests to failure. Variations in the test configuration included strand obtained from two manufacturers, single-use and multiple-use anchorage systems, and variations in initial post-tensioning strand stress. Characteristics of the response that were investigated included seating losses, deformation capacity prior to initial fracture, additional deformation capacity after initial fracture, and the overall load-deformation behavior. Data was analyzed to provide recommendations for PT strand system usage in self-centering seismic force resisting systems. It was concluded that significant strength and ductility allow PT strand systems to consistently provide self-centering systems with reliable restoring force capability.
- Biaxial Behavior of Ultra-High Performance Concrete and Untreated UHPC Waffle Slab Bridge Deck Design and TestingD'Alessandro, Kacie Caple (Virginia Tech, 2013-08-28)Ultra-high performance concrete (UHPC) was evaluated as a potential material for future bridge deck designs. Material characterization tests took place to identify potential challenges in mixing, placing, and curing UHPC. Biaxial testing was performed to evaluate behavior of UHPC in combined tension and compression stress states. A UHPC bridge deck was designed to perform similarly to a conventional concrete bridge deck, and a single unit bridge deck section was tested to evaluate the design methods used for untreated UHPC. Material tests identified challenges with placing UHPC. A specified compressive strength was determined for structural design using untreated UHPC, which was identified as a cost-effective alternative to steam treated UHPC. UHPC was tested in biaxial tension-compression stress states. A biaxial test method was developed for UHPC to directly apply tension and compression. The influence of both curing method and fiber orientation were evaluated. The failure envelope developed for untreated UHPC with random fiber orientation was suggested as a conservative estimate for future analysis of UHPC. Digital image correlation was also evaluated as a means to estimate surface strains of UHPC, and recommendations are provided to improve consistency in future tests using DIC methods. A preliminary bridge deck design was completed for untreated UHPC and using established material models. Prestressing steel was used as primary reinforcement in the transverse direction. Preliminary testing was used to evaluate three different placement scenarios, and results showed that fiber settling was a potential placement problem resulting in reduced tensile strength. The UHPC bridge deck was redesigned to incorporate preliminary test results, and two single unit bridge deck sections were tested to evaluate the incorporated design methods for both upside down and right-side up placement techniques. Test results showed that the applied design methods would be conservative for either placement method.
- CFRP as Shear and End-Zone Reinforcement for Concrete Bridge GirdersMagee, Mitchell Drake (Virginia Tech, 2016-06-29)Corrosion of reinforcing steel is a major cause of damage to bridges in the United States. A possible solution to the corrosion issue is carbon fiber reinforced polymer (CFRP) material. CFRP material has been implemented as flexural reinforcement in many cases, but not as transverse reinforcing. The CFRP material studied in this thesis was NEFMAC grid, which consists of vertical and horizontal CFRP tows that form an 8 in. by 10 in. grid. The use of NEFMAC grid as transverse reinforcing has not been previously investigated. First, the development length of NEFMAC grid was determined. Next, an 18 ft long 19 in. deep beam, modeled after prestressed Bulb-T beams, was created with NEFMAC grid reinforcement. The beam was loaded with a single point load near the support to induce shear failure. Beams were fitted with instrumentation to capture shear cracking data. Shear capacity calculations following four methods were compared to test results. Lastly, a parametric study with strut-and-tie modeling was performed on Precast Bulb-T (PCBT) girders to determine the amount of CFRP grid needed for reinforcement in the anchorage zone. This thesis concludes that NEFMAC grid is a viable shear design option and presents the initial recommendations for design methods. These methods provide a basis for the design of NEFMAC grid shear reinforcing that could be used as a starting point for future testing of full scale specimens. When designing with NEFMAC grid, the full manufacturer's guaranteed strength should be used as it is the average reduced by three standard deviations. AASHTO modified compression field theory provides the best prediction of shear capacity. For anchorage zone design, working stress limits for CFRP grids need to be increased to allow more of the strength to be implemented in design.
- Characterizing the Load-Deformation Behavior of Steel Deck Diaphragms using Past Test DataO'Brien, Patrick Emmet (Virginia Tech, 2017-08-07)Recent research has identified that current code level seismic demands used for diaphragm design are considerably lower than demands in real structures during a seismic event. However, historical data has shown that steel deck diaphragms, common to steel framed buildings, perform exceptionally well during earthquake events. A new alternative diaphragm design procedure in ASCE 7-16 increases diaphragm seismic demand to better represent expected demands. The resulting elastic design forces from this method are reduced by a diaphragm design force reduction factor, Rs, to account for the ductility of the diaphragm system. Currently, there exist no provisions for Rs factors for steel deck diaphragms. This research was therefore initiated to understand inelastic steel deck diaphragm behavior and calculate Rs factors. A review of the literature showed that a large number of experimental programs have been performed to obtain the in-plane load-deformation behavior of steel deck diaphragms. To unify review of these diaphragm tests and their relevant results, a database of over 750 tested specimens was created. A subset of 108 specimens with post-peak, inelastic behavior was identified for the characterization of diaphragm behavior and ductility. A new recommended method for predicting shear strength and stiffness for steel deck diaphragms with structural concrete fill is proposed along with an appropriate resistance factor. Diaphragm system level ductility and overstrength are estimated based on subassemblage test results and Rs factors are then calculated based on these parameters. The effects of certain variables such as deck thickness and fastener spacing on diaphragm ductility are explored.
- Cold-Formed Steel Behavior: Elastic Buckling Simplified Methods for Structural Members with Edge-Stiffened Holes and Purlin Distortional Buckling Strength Under Gravity LoadingGrey, Christopher Norton (Virginia Tech, 2011-04-29)Elastic Buckling Simplified Methods for Structural Members with Edge-Stiffened Holes: Presently, the current design methods available to engineers to predict the strength of cold-formed steel members with edge-stiffened holes remains largely unaddressed in the North American Specification for the Design of Cold-Formed Steel Structural Members (NAS). Research was conducted to explore and develop a further understanding of the effects of stiffened edge holes on the elastic buckling parameters for local, distortional, and global buckling. Elastic buckling parameter studies have been conducted on a suite of cold-formed members including recently developed DeltaSTUDs manufactured by Steelform Building Products, Inc. and a series of common Steel Stud Manufacturers Association (SSMA) members. Furthermore, a suite of simplified methods for determining elastic buckling parameters used to predict capacity with the Direct Strength Method (DSM) for members with edge stiffened holes were developed and validated. The elastic buckling studies are used to validate the simplified methods presented in this thesis. All simplified methods are further validated with thin shell finite element eigen-buckling parameter studies where the edge-stiffened holes are explicitly modeled. Purlin Distortional Buckling Strength Under Gravity Loading: Laterally braced cold-formed steel beams generally fail due to local and/or distortional buckling in combination with yielding. For many members, distortional buckling is the dominant buckling mode and is addressed in the current North American Specification for the Design of Cold-formed Steel Structural Members. The current main code equation, AISI C3.1.4-10 for calculating the available distortional buckling stress was derived experimentally based on a series of four-point bending tests at John Hopkins University. Where this provides a good basis for determining capacity, in most loading conditions purlins are subjected to a downward uniform loading that provides additional resistance to distortional buckling in the top flange beyond the resistance of the steel roofing panel. This research describes an experimental study to explore and quantify the difference in distortional buckling flexural capacity of metal building Z-purlins treated as isolated components and Z-purlins loaded with a constant pressure applied to metal roof panels. A series of three different types of tests have been developed to quantify the system effect provided by the metal roof panels as well as downward pressure on distortional buckling. Results are also extended to validate the Direct Strength Method when predicting flexural capacity of purlins in a roof system.
- Comparison of Bridge Deck Damage Condition Evaluated by GPR and Chain DragZou, Tao; Moen, Cristopher D. (2013)
- Comparison of Bridge Deck Damage Condition Evaluated by GPR and Impact EchoZou, Tao; Moen, Cristopher D. (2013-07-31)
- Computational Investigation of Tunable Steel Plate Shear Walls for Improved Seismic ResistanceKoppal, Manasa (Virginia Tech, 2012-08-03)Steel plate shear walls (SPSWs) are popular lateral force resisting systems whose practical applications range from high seismic regions to medium and low seismic areas and wind load applications. The factors which make SPSW attractive include its energy dissipation capacity, excellent ductility, constructability, speed of construction compared to concrete shear walls, reduced architectural footprint compared to concrete shear walls, and increased inelastic deformation capacity as compared to braced frames. The principle behind current SPSW design is that the post-buckling tension field capacity of the thin web plate is proportioned to resist the full lateral load. The resulting web plate is typically quite thin, buckles at low loads, possesses low stiffness, and does not provide resistance when the lateral loads are reversed until the tension field engages in the opposite direction. To compensate for these shortcomings, moment connections are required at the beam to column connections to improve energy dissipation, increase stiffness, and provide lateral resistance during load reversal. The resulting SPSW designs with very thin web plates, moment connections, and beams and columns significantly larger than comparable braced frames, can result in inefficient structural systems. The objective of this work is to develop steel plate shear wall systems that are more economic and efficient. In order to achieve this, approaches like shear connections between beams and columns, allowing some yielding in columns and increasing plate thicknesses were attempted. But these approaches were not effective in that there was no reduction in the amount of steel required since stiffness controlled the designs. This necessitated the creation of tunable steel plate shear wall systems in which strength and stiffness could be decoupled. Preliminary analyses of seven steel plate shear wall systems which allow tunability were conducted and two configurations namely circular holes and butterfly shaped links around the perimeter, that showed promising results were chosen. The solid plate in the middle of the panel contributes significant pre-yield stiffness to the system while the geometry of the perimeter perforations controls strength and ductility. An example panel was designed using the two approaches and compared to panels designed using current SPSW design methods. The proposed configurations resulted in improved overall performance of the system in terms of energy dissipation, stable hysteresis, required less steel and no moment connections between beams and columns. This was also observed from the parametric study that was performed by varying the thickness of the web plate and the geometry of the configurations. Thus it was concluded that the two proposed configurations of cutouts were promising concepts that allow separate tuning of the system strength, stiffness and ductility and could be adopted in any seismic zone for improved seismic resistance.
- Computational simulation and analytical development of Buckling Resistant Steel Plate Shear Wall (BR-SPSW)Maurya, Abhilasha (Virginia Tech, 2012-08-06)Steel plate shear walls (SPSWs) are an attractive option for lateral load resisting systems for both new and retrofit construction. They, however, present various challenges that can result in very thin web plates and excessively large boundary elements with moment connections, neither of which is economically desirable. Moreover, SPSW also suffers from buckling at small loads which results in highly pinched hysteretic behavior, low stiffness, and limited energy dissipation. To mitigate these shortcomings, a new type of SPSW has been developed and investigated. The buckling resistant steel plate shear wall (BR-SPSW) utilizes a unique pattern of cut-outs to reduce buckling. Also, it allows the use of simple shear beam-column connections and lends tunability to the shear wall system. A brief discussion of the concept behind the BR-SPSW is presented. A detailed parametric study is presented that investigates the sensitivity of the local and global system behavior to the geometric design variables using finite element models as the main tool. The key output parameters which define the system response are discussed in detail. Analytical solutions for some output parameters like strength and stiffness have been derived and resulting equations are proposed. Finally, preliminary suggestions have been made about how this system can be implemented in practice to improve the seismic resistance of the buildings. The proposed BR-SPSW system was found to exhibit relatively fuller hysteretic behavior with high resistance during the load reversals, without the use of moment connections.
- Curtain Beam Strip AnalysisMoen, Cristopher D.; Janas, Matthew (2011-04-01)A beam strip model based on an Euler-Bernoulli elastica solution is implemented in a freely available wind analysis computer program for metal building vehicular access doors to calculate door jamb forces and curtain deflections considering jamb and framing flexibility. The software is provided to support analysis-based vehicular access door design for metal buildings. Existing access door curtain and jamb design approaches are viable for rigid door jambs. However it was shown with experiments that wind-lock forces decrease and door out-of-plane deflection increases when the door jamb and framing are more flexible, for example, in the case of typical cold-formed steel framing details where a C-section jamb is discretely braced by wall girts.
- Development of a Composite Concrete Bridge System for Short-to-Medium-Span BridgesMenkulasi, Fatmir (Virginia Tech, 2014-08-23)The inverted T-beam bridge system provides an accelerated bridge construction alternative for short-to-medium-span bridges. The system consists of adjacent precast inverted T-beams finished with a cast-in-place concrete topping. The system offers enhanced performance against reflective cracking, and reduces the likelihood of cracking due to time dependent effects. The effects of transverse bending due to concentrated wheel loads are investigated with respect to reflective cracking. Transverse bending moment are quantified and compared to transverse moment capacities provided by a combination of various cross-sectional shapes and transverse connections. A design methodology for transverse bending is suggested. Tensile stresses created due to time dependent and temperature effects are quantified at the cross-sectional and structure level and strategies for how to alleviate these tensile stresses are proposed. Because differential shrinkage is believed to be one of the causes of deck cracking in composite bridges, a study on shrinkage and creep properties of seven deck mixes is presented with the goal of identifying a mix whose long terms properties reduce the likelihood of deck cracking. The effects of differential shrinkage at a cross-sectional level are numerically demonstrated for a variety of composite bridge systems and the resistance of the inverted T-beam system against time dependent effects is highlighted. End stresses in the end zones of such a uniquely shaped precast element are investigated analytically in the vertical and horizontal planes. Existing design methods are evaluated and strut-and-tie models, calibrated to match the results of 3-D finite element analyses, are proposed as alternatives to existing methods to aid designers in sizing reinforcing in the end zones. Composite action between the precast beam and the cast-in-place topping is examined via a full scale test and the necessity of extended stirrups is explored. It is concluded that because of the large contact surface between the precast and cast-in-place elements, cohesion alone appears to provide the necessary horizontal shear strength to ensure full composite action. Live load distribution factors are quantified analytically and by performing four live loads tests. It is concluded that AASHTO's method for cast-in-place slab span bridges can be conservatively used in design.
- Development of a Numerical Model to Analyze the Condition of Prestressed Concrete Cylinder Pipe (PCCP)Ge, Shaoqing (Virginia Tech, 2016-08-27)Prestressed Concrete Cylinder Pipe (PCCP) is a large-diameter and high-pressure conduit for drinking water and wastewater transmission. Due to its large diameter, high pressure, and mode of breakdown, PCCP failures usually have catastrophic consequences. To mitigate failures, it is very important to assess the condition of the pipe and take proactive measures, such as repair, rehabilitation, or replacement. There are many challenges in assessing the condition of PCCP. PCCP has a complex structure with several layers of materials (e.g. mortar coating, prestressing wire, steel cylinder, and concrete core) working together under loading. This means that there are many factors that can cause pipe failure, and that failure mechanisms are complicated. Data collection could be difficult, and existing data are often unavailable or unreliable. Considerable research has been conducted by scholars and engineers in developing models to evaluate the condition of PCCP. There are mainly two types of models: statistical models, and numerical models using finite element method. Statistical models consider only a few factors, such as pipe age and failure rate, to predict the failure of PCCP. However, the failure of PCCP can be caused by many other factors including pipe material, and loading conditions. Models only considering a few factors are not robust enough for reliable results. The current numerical models assume that all broken wires are centrally distributed in the same location and broken wires have no prestress, thus all broken wires are completely removed from the model. These assumptions could be overly conservative when actual broken wires are distributed in different locations along the pipeline and broken wires have remaining prestress due to the bond between the wire and mortar coating. Therefore, a more comprehensive numerical model is needed to have a better understanding of the condition of PCCP. In this research, an extensive literature and practice review was conducted on PCCP failures to understand the critical factors that affect pipe condition. The available technologies commonly used to detect pipe defects were reviewed in order to better understand the accuracy and uncertainties of the collected data. Existing models were reviewed to better understand their limitations and to advance the research on condition analysis of PCCP using numerical models. Based on these comprehensive reviews, this dissertation proposed a numerical model to analyze the condition of PCCP for its long-term performance management. Detailed structural components such as concrete cores, prestressing wires, steel cylinder, and mortar coating were modelled. The interactions between different layers of pipe components were considered. An algorithm was proposed to account for the bond between the prestressing wire and mortar coating, which is a critical factor for the condition of PCCP with broken wires. A FORTRAN program was developed to assign linear stress distribution between the broken point and the full-prestress resuming point. The proposed numerical model was verified utilizing data from lab tests and forensic study. Lab test data helped to understand the functionality of the model and to verify the model parameters used in analyzing pipe components and the simulation of interactions between different layers. The forensic data helped to verify the model under actual field working conditions of the pipe. Validation of the proposed numerical model was conducted using a 66-inch Embedded Cylinder Pipe and two Lined Cylinder Pipes (42-inch and 48-inch, respectively) from a water utility. In the validation, field data were collected for model development. The simulation results were consistent with the field observation, which proved the validity and applicability of the proposed numerical model in practice. A series of sensitivity studies were conducted to investigate the impact of longitudinal and circumferential location on the structural integrity of the pipe. These investigations showed that considering the actual longitudinal and circumferential location of broken wires is very important to get accurate analysis of pipe condition, while assuming that all broken wires fail in one longitudinal location (assumptions by current numerical models for PCCP) will overestimate the actual damage to the pipe caused by broken wires. To consider the bedding condition, a critical factor for PCCP, the four most common bedding types found in practice were analyzed. Results show that poor bedding could lead to cracks in PCCP, which could cause corrosion in prestressing wires. Therefore, it is very important to account for bedding conditions in the PCCP analysis. The model presented in this dissertation is more comprehensive and robust compared with existing numerical models, and could provide a better understanding of the condition of PCCP. This is because the proposed model considers the contribution of remaining prestress in broken wires due to the bond between the wire and mortar coating. This model can consider the actual longitudinal and circumferential location of broken wires rather than centrally distribute them, and it can consider the actual bedding locations, and the interaction between different layers of materials. This model was calibrated using lab test data and forensic data, and was further validated using field data which showed consistence between simulation results and field observations. The proposed model does have limitations due to limited availability of data and assumptions. Material tests were not conducted to verify the material properties used in the model, which could cause accuracy issues in the results. A full-scale simulation of the interaction between prestressing wire and mortar coating was not considered because it could significantly increase the computation time. Lab tests were not conducted to verify the parameters used for the simulation of interaction between concrete core and steel cylinder which could lead to accuracy problems. Finally, it is acknowledged that the model was only validated in one water utility and validations in more geographically distributed utilities might further test the model's validity and robustness. Nonetheless, the comprehensiveness and robustness of this proposed model improved the analysis of the condition of PCCP. The findings and results of this research will provide guidance for better management of PCCP pipelines for water utilities, and provide reference for future research on numerical modeling of PCCP as well.
- Development of Novel Computational Simulation Tools to Capture the Hysteretic Response and Failure of Reinforced Concrete Structures under Seismic LoadsMoharrami Gargari, Mohammadreza (Virginia Tech, 2016-07-26)Reinforced concrete (RC) structures constitute a significant portion of the building inventory in earthquake-prone regions of the United States. Accurate analysis tools are necessary to allow the quantitative assessment of the performance and safety offered by RC structures. Currently available analytical approaches are not deemed adequate, because they either rely on overly simplified models or are restricted to monotonic loading. The present study is aimed to establish analytical tools for the accurate simulation of RC structures under earthquake loads. The tools are also applicable to the simulation of reinforced masonry (RM) structures. A new material model is formulated for concrete under multiaxial, cyclic loading conditions. An elastoplastic formulation, with a non-associative flow rule to capture compression-dominated response, is combined with a rotating smeared-crack model to capture the damage associated with tensile cracking. The proposed model resolves issues which characterize existing concrete material laws. Specifically, the newly proposed formulation accurately describes the crack opening/closing behavior and the effect of confinement on the strength and ductility under compressive stress states. The model formulation is validated with analyses both at the material level and at the component level. Parametric analyses on RC columns subjected to quasi-static cyclic loading are presented to demonstrate the need to regularize the softening laws due to the spurious mesh size effect and the importance of accounting for the increased ductility in confined concrete. The impact of the shape of the yield surface on the results is also investigated. Subsequently, a three-dimensional analysis framework, based on the explicit finite element method, is presented for the simulation of RC and RM components under cyclic static and dynamic loading. The triaxial constitutive model for concrete is combined with a material model for reinforcing steel which can account for the material hysteretic response and for rupture due to low-cycle fatigue. The reinforcing steel bars are represented with geometrically nonlinear beam elements to explicitly account for buckling of the reinforcement. The strain penetration effect is also accounted for in the models. The modeling scheme is validated with the results of experimental static and dynamic tests on RC columns and RC/RM walls. The analyses are supplemented with a sensitivity study and with calibration guidelines for the proposed modeling scheme. Given the computational cost and complexity of three-dimensional finite element models in the simulation of shear-dominated structures, the development of a conceptually simpler and computationally more efficient method is also pursued. Specifically, the nonlinear truss analogy is employed to capture the response of shear-dominated RC columns and RM walls subjected to cyclic loading. A step-by-step procedure to establish the truss geometry is described. The uniaxial material laws for the concrete and masonry are calibrated to account for the contribution of aggregate interlock resistance across inclined shear cracks. Validation analyses are presented, for quasi-static and dynamic tests on RC columns and RM walls.
- Digital State Models for Infrastructure Condition Assessment and Structural TestingLama Salomon, Abraham (Virginia Tech, 2017-02-10)This research introduces and applies the concept of digital state models for civil infrastructure condition assessment and structural testing. Digital state models are defined herein as any transient or permanent 3D model of an object (e.g. textured meshes and point clouds) combined with any electromagnetic radiation (e.g., visible light, infrared, X-ray) or other two-dimensional image-like representation. In this study, digital state models are built using visible light and used to document the transient state of a wide variety of structures (ranging from concrete elements to cold-formed steel columns and hot-rolled steel shear-walls) and civil infrastructures (bridges). The accuracy of digital state models was validated in comparison to traditional sensors (e.g., digital caliper, crack microscope, wire potentiometer). Overall, features measured from the 3D point clouds data presented a maximum error of ±0.10 in. (±2.5 mm); and surface features (i.e., crack widths) measured from the texture information in textured polygon meshes had a maximum error of ±0.010 in. (±0.25 mm). Results showed that digital state models have a similar performance between all specimen surface types and between laboratory and field experiments. Also, it is shown that digital state models have great potential for structural assessment by significantly improving data collection, automation, change detection, visualization, and augmented reality, with significant opportunities for commercial development. Algorithms to analyze and extract information from digital state models such as cracks, displacement, and buckling deformation are developed and tested. Finally, the extensive data sets collected in this effort are shared for research development in computer vision-based infrastructure condition assessment, eliminating the major obstacle for advancing in this field, the absence of publicly available data sets.
- Direct Strength Method for the Flexural Design of Through-Fastened Metal Building Roof and Wall Systems under Wind Uplift or SuctionGao, Tian (Virginia Tech, 2012-08-03)The design of metal building roof and wall systems under uplift and suction wind loading is complicated because the laterally unbraced purlin and girt's free flange is compressed, and the cross-section rotates due to the shear flow. The objective of this thesis is to introduce a Direct Strength Method (DSM) prediction approach for simple span purlins and girts with one flange through-fastened under uplift or suction loading. This prediction method is also applicable for the case when rigid board insulation is placed between the metal panel and through-fastened flange. The prediction method is validated with a database of 62 simple span tests. To evaluate the prediction for the case when rigid board is used, 50 full-scale tests with rigid board insulation are conducted by the author of this thesis. In the experimental study panel failure, connection failure and member (purlin and girt) failure are observed, and they all limit the system's capacity. Another important contribution of this thesis is that it builds the foundation for future study of a general, mechanics-based limit state design approach for metal building roof and wall systems that can accommodate uplift and gravity loads, simple and continuous spans, and through-fastened and standing seam roofs.
- Distortional Buckling Experiments on Cold-Formed Steel Joists with Unstiffened HolesSchudlich, Anna; von der Heyden, Aaron; Moen, Cristopher D. (2011-09-01)Experiments were conducted on cold-formed steel C-section joists with rectangular unstiffened web holes. The presence of holes decreased joist capacity and amplified distortional buckling deformation. Distortional buckling was accompanied by unstiffened strip buckling of the compressed web. When hole depth approached the web depth, sudden flexural buckling of the compressed flange at the hole was observed. Forthcoming direct strength method equations for joists with holes accurately predicted flexural capacity when web hole depth equaled two-thirds the web depth, and was unconservative for larger web holes.