Browsing by Author "Murrugarra, David"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Modeling stochasticity and variability in gene regulatory networksMurrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Arat, Seda; Laubenbacher, Reinhard C. (2012-06-06)Modeling stochasticity in gene regulatory networks is an important and complex problem in molecular systems biology. To elucidate intrinsic noise, several modeling strategies such as the Gillespie algorithm have been used successfully. This article contributes an approach as an alternative to these classical settings. Within the discrete paradigm, where genes, proteins, and other molecular components of gene regulatory networks are modeled as discrete variables and are assigned as logical rules describing their regulation through interactions with other components. Stochasticity is modeled at the biological function level under the assumption that even if the expression levels of the input nodes of an update rule guarantee activation or degradation there is a probability that the process will not occur due to stochastic effects. This approach allows a finer analysis of discrete models and provides a natural setup for cell population simulations to study cell-to-cell variability. We applied our methods to two of the most studied regulatory networks, the outcome of lambda phage infection of bacteria and the p53-mdm2 complex.
- Stabilizing gene regulatory networks through feedforward loopsKadelka, Claus Thomas; Murrugarra, David; Laubenbacher, Reinhard C. (American Institute of Physics, 2013-06)The global dynamics of gene regulatory networks are known to show robustness to perturbations in the form of intrinsic and extrinsic noise, as well as mutations of individual genes. One molecular mechanism underlying this robustness has been identified as the action of so-called microRNAs that operate via feedforward loops. We present results of a computational study, using the modeling framework of stochastic Boolean networks, which explores the role that such network motifs play in stabilizing global dynamics. The paper introduces a new measure for the stability of stochastic networks. The results show that certain types of feedforward loops do indeed buffer the network against stochastic effects.