Browsing by Author "Neel, Reece E."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Advances In Computational Fluid Dynamics: Turbulent Separated Flows And Transonic Potential FlowsNeel, Reece E. (Virginia Tech, 1997-06-06)Computational solutions are presented for flows ranging from incompressible viscous flows to inviscid transonic flows. The viscous flow problems are solved using the incompressible Navier-Stokes equations while the inviscid solutions are attained using the full potential equation. Results for the viscous flow problems focus on turbulence modeling when separation is present. The main focus for the inviscid results is the development of an unstructured solution algorithm. The subject dealing with turbulence modeling for separated flows is discussed first. Two different test cases are presented. The first flow is a low-speed converging-diverging duct with a rapid expansion, creating a large separated flow region. The second case is the flow around a stationary hydrofoil subject to small, oscillating hydrofoils. Both cases are computed first in a steady state environment, and then with unsteady flow conditions imposed. A special characteristic of the two problems being studied is the presence of strong adverse pressure gradients leading to flow detachment and separation. For the flows with separation, numerical solutions are obtained by solving the incompressible Navier-Stokes equations. These equations are solved in a time accurate manner using the method of artificial compressibility. The algorithm used is a finite volume, upwind differencing scheme based on flux-difference splitting of the convective terms. The Johnson and King turbulence model is employed for modeling the turbulent flow. Modifications to the Johnson and King turbulence model are also suggested. These changes to the model focus mainly on the normal stress production of energy and the strong adverse pressure gradient associated with separating flows. The performance of the Johnson and King model and its modifications, along with the Baldwin-Lomax model, are presented in the results. The modifications had an impact on moving the flow detachment location further downstream, and increased the sensitivity of the boundary layer profile to unsteady flow conditions. Following this discussion is the numerical solution of the full potential equation. The full potential equation assumes inviscid, irrotational flow and can be applied to problems where viscous effects are small compared to the inviscid flow field and weak normal shocks. The development of a code is presented which solves the full potential equation in a finite volume, cell centered formulation. The unique feature about this code is that solutions are attained on unstructured grids. Solutions are computed in either two or three dimensions. The grid has the flexibility of being made up of tetrahedra, hexahedra, or prisms. The flow regime spans from low subsonic speeds up to transonic flows. For transonic problems, the density is upwinded using a density biasing technique. If lift is being produced, the Kutta-Joukowski condition is enforced for circulation. An implicit algorithm is employed based upon the Generalized Minimum Residual method. To accelerate convergence, the Generalized Minimum Residual method is preconditioned. These and other problems associated with solving the full potential equation on an unstructured mesh are discussed. Results are presented for subsonic and transonic flows over bumps, airfoils, and wings to demonstrate the unstructured algorithm presented here.
- Assessment of Formulations for Numerical Solutions of Low Speed, Unsteady, Turbulent Flows over Bluff BodiesCampioli, Theresa Lynn (Virginia Tech, 2005-04-28)Two algorithms commonly used for solving low-speed flow fields are evaluated using an unsteady turbulent flow formulation. The first algorithm is the method of artificial compressibility which solves the incompressible Navier-Stokes equations. The second is a preconditioned system for solving the compressible Navier-Stokes equations. Both algorithms have been implemented into GASP Version 4, which is the flow solver used in this investigation. Unsteady numerical simulations of unsteady, 2-D flow over square cylinders are performed with comparisons made to experimental data. Cases studied include both a single-cylinder and a three-cylinder configuration. Two turbulence models are also used in the computations, namely the Spalart-Allmaras model and the Wilcox k-ω (1998) model. The following output data was used for comparison: aerodynamic forces, mean pressure coefficient, Strouhal number, mean velocity magnitude and turbulence intensity. The main results can be summarized as follows. First, the predictions are more sensitive to the turbulence model choice than to the choice of algorithm. The Spalart-Allmaras model overall produced better results with both algorithms than the Wilcox k-ω model. Second, the artificial compressibility algorithm produced slightly more consistent results compared with experiment.
- Clean Wing Airframe Noise Modeling for Multidisciplinary Design and OptimizationHosder, Serhat (Virginia Tech, 2004-07-29)A new noise metric has been developed that may be used for optimization problems involving aerodynamic noise from a clean wing. The modeling approach uses a classical trailing edge noise theory as the starting point. The final form of the noise metric includes characteristic velocity and length scales that are obtained from three-dimensional, steady, RANS simulations with a two- equation k-omega turbulence model. The noise metric is not the absolute value of the noise intensity, but an accurate relative noise measure as shown in the validation studies. One of the unique features of the new noise metric is the modeling of the length scale, which is directly related to the turbulent structure of the flow at the trailing edge. The proposed noise metric model has been formulated so that it can capture the effect of different design variables on the clean wing airframe noise such as the aircraft speed, lift coefficient, and wing geometry. It can also capture three-dimensional effects which become important at high lift coefficients, since the characteristic velocity and the length scales are allowed to vary along the span of the wing. Noise metric validation was performed with seven test cases that were selected from a two-dimensional NACA 0012 experimental database. The agreement between the experiment and the predictions obtained with the new noise metric was very good at various speeds, angles of attack, and Reynolds Number, which showed that the noise metric is capable of capturing the variations in the trailing edge noise as a relative noise measure when different flow conditions and parameters are changed. Parametric studies were performed to investigate the effect of different design variables on the noise metric. Two-dimensional parametric studies were done using two symmetric NACA four-digit airfoils (NACA 0012 and NACA 0009) and two supercritical (SC(2)-0710 and SC(2)-0714) airfoils. The three-dimensional studies were performed with two versions of a conventional transport wing at realistic approach conditions. The twist distribution of the baseline wing was changed to obtain a modified wing which was used to investigate the effect of the twist on the trailing edge noise. An example study with NACA 0012 and NACA 0009 airfoils demonstrated a reduction in the trailing edge noise by decreasing the thickness ratio and the lift coefficient, while increasing the chord length to keep the same lift at a constant speed. Both two- and three-dimensional studies demonstrated that the trailing edge noise remains almost constant at low lift coefficients and gets larger at higher lift values. The increase in the noise metric can be dramatic when there is separation on the wing. Three-dimensional effects observed in the wing cases indicate the importance of calculating the noise metric with a characteristic velocity and length scale that vary along the span. The twist change does not have a significant effect on the noise at low lift coefficients, however it may give significant noise reduction at higher lift values. The results obtained in this study show the importance of the lift coefficient on the airframe noise of a clean wing and favors having a larger wing area to reduce the lift coefficient for minimizing the noise. The results also point to the fact that the noise reduction studies should be performed in a multidisciplinary design and optimization framework, since many of the parameters that change the trailing edge noise also affect the other aircraft design requirements. It's hoped that the noise metric developed here can aid in such multidisciplinary design and optimization studies.
- Computational and Experimental Investigation of Supersonic Convection over a Laser Heated TargetMarineau, Eric Christian (Virginia Tech, 2007-05-10)This research concerns the development and validation of simulation of the beam-target interaction to determine the target temperature distribution as a function of time for a given target geometry, surface radiation intensity and free stream flow condition. The effect of a turbulent supersonic flow was investigated both numerically and experimentally. Experiments were in the Virginia Tech supersonic wind tunnel with a Mach 4 nozzle, ambient total temperature, total pressure of 160 psi and Reynolds number of 5 × 10⁷/m . The target consisted of a 6.35 mm stainless steel plate painted flat black. The target was irradiated with a 300 Watt continuous beam Ytterbium fiber laser generating a 4 mm Gaussian beam at 1.08 micron 10 cm from the leading edge where a 4 mm turbulent boundary layer prevailed. An absorbed laser power of 65, 81, 101, 120 Watts was used leading to a maximum heat flux between 1035 to 1910 W/cm². The target surface and backside temperature was measured using a mid-wave infrared camera. The backside temperature was also measured using eight type-K thermocouples. Two tests are made, one with the flow-on and the other with the flow-off. For the flow-on case, the laser is turned on after the tunnel starts and the flow reaches a steady state. For the flow-off case, the plate is heated at the same power but without the supersonic flow. The cooling effect is seen by subtracting the flow-off temperature from the flow-on temperature. This temperature subtraction is useful in cancelling the bias errors such that the overall uncertainty is significantly reduced. A new conjugate heat transfer algorithm was implemented in the GASP solver and validated by predicting the temperature distribution inside a cooled nozzle wall. The conjugate heat transfer algorithm was used to simulate the experiments at 81 and 65 Watts. Most computations were performed using the Spalart-Allmaras turbulence model on a 280, 320 cell grid. A grid convergence study was performed. At 65 Watts, good agreement was found in the predicted surface and backside temperature. On the surface, cooling was underpredicted close to the center and better agreement was seen away form the center. On the backside, good agreement was found for the temperature and temperature difference. Compared to the 65 Watt case, the 81 Watt case displays more asymmetry and a region of increased cooling is found upstream. The increased asymmetry was also seen on the backside by both the thermocouple and infrared temperature measurements. The computation underpredicts the surface temperature by 7% for the flow-off case. Again, cooling is underpredicted at the surface near the center. For all power settings, convective cooling significantly increases the time required to reach a given temperature.
- Numerical Studies of the Jet Interaction Flowfield with a Main Jet and an Array of Smaller JetsViti, Valerio (Virginia Tech, 2003-04-09)A numerical study of a proposed innovative jet interaction configuration is presented. This work aimed at improving present-day jet interaction configurations in their applications as control thrusters on hypersonic vehicles. Jet thrusters are a useful control system for fast-moving vehicles flying in the upper layers of the atmosphere because of their effectiveness and responsiveness. They produce a strong and responsive lateral force on the vehicle through the interaction of two main mechanisms. The first mechanism comes from the momentum of the injectant itself, basically the thrust of the jet. The second and subtler contribution comes from the jet interaction flowfield, the interaction of the expanding injectant with the crossflow. This interaction produces areas of high pressure ahead of the injector and areas of low pressure in the region aft of the jet. The combination of the high-pressure regions in front of and low-pressure regions aft of the injector produces an undesirable nose-down pitching moment on the vehicle. In order to counterbalance the nose-down attitude, modern-day thruster designs include a large secondary injector far aft of the center of gravity of the vehicle. The thrust of this second injector acting far aft of the primary injector neutralizes the nose-down pitching moment. This is not an efficient method to obviate the problem since it requires the vehicle to be designed to carry two large thrusters and double the quantity of fuel necessary for one thruster. In light of these considerations, this study aimed at developing a jet interaction configuration that can dispense from the need of a large secondary injector to compensate for the nose-down pitching moment. The cases studied here were first a primary jet alone and then a primary jet with pairs of smaller jets. This configuration was based on the notion that the interaction of the secondary jets, conveniently located immediately aft of the thruster, with the barrel shock and the wake of the primary jet can drastically reduce the nose-down pitching moment. Because of the complexity of the jet interaction flowfield the investigation of the feasibility and the assessment of the efficiency of the new jet interaction configurations combined the present numerical effort with experimental studies of jet interaction flowfields performed in the supersonic wind tunnel at Virginia Tech. During the present numerical study the jet interaction flowfield associated with the sonic injection of a gas into a high-speed crossflow was simulated by numerically solving the Reynolds Averaged Navier Stokes (RANS) equations. Turbulence was modeled through a first-order model, the Wilcox's 1988 k-w turbulence model. The computations made use of the finite volume code General Aerodynamic Simulation Program (GASP) Version 4. For simplicity and to keep the study general, the jet interaction flowfield was studied on a flat plate instead of a body of revolution as on a vehicle. Calculations were run for a number of jet interaction configurations consisting of a primary jet alone, a primary jet and one pair of secondary jets, and a primary jet and two pairs of secondary jets. The flow conditions of the simulations ranged from a Mach number of 2.1 up to a Mach number of 4.5 and jet total pressure to freestream static pressure ratios of 14 to 680. A large effort was dedicated to the development of an efficient computational grid that could capture most of the flow-physics with a minimum number of cells. To this end , Chimera or overset grids were employed in the simulation of the secondary injectors. Grid convergence was shown to be achieved for the case of single injection by conducting a thorough convergence study. The discretization error was calculated through a modified Richardson extrapolation to be low. The numerical solutions were compared to the experimental results in order to assess the capability of RANS equations and of first-order turbulence models to properly simulate the complex flowfield. The k-w turbulence model proved to be reliable and robust and the results it provided for this type of flowfield were accurate enough from an engineering standpoint to make informed decisions about the configuration layout. In spite of the overall good performance, the k-w turbulence model failed to correctly predict the flow in the regions of strong adverse pressure gradients. Comparisons with experimental results showed that the separation region was often under-predicted thus highlighting the need to employ better turbulence models for more accurate results. The RANS equations were found accurate enough to provide physical mean-flow solutions. Further, the numerical simulations provided information about the detailed physics of the flowfield that is impossible to obtain through experimental work. The analysis of the numerical solutions highlighted the existence of a complex system of counter-rotating trailing vortices that are responsible for the mixing of the injectant with the freestream. The typical features of the flowfield created by an under-expanded jet exhausting in a quiescent medium were visible in the jet interaction flowfield with the difference of the existence of a crossflow and a non-uniform back-pressure. The region of low pressure aft of the injector was shown to be generated by the detachment of the barrel shock from the surface of the flat plate that leaves a large volume to be filled by the surrounding fluid. The simulations showed that the innovative configuration with one primary jet and an array of smaller secondary jets can effectively decrease the nose-down pitching moment by as much as 160%. In some cases, it also increased the total normal force acting on the flat plate (namely the thrust) by as much as 3%. This effect was found to be caused by the reduction in size and intensity of the low-pressure region aft of the primary injector.