Browsing by Author "Nemchinov, Lev G."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Cellular and Transcriptional Responses of Resistant and Susceptible Cultivars of Alfalfa to the Root Lesion Nematode, Pratylenchus penetransVieira, Paulo; Mowery, Joseph; Eisenback, Jonathan D.; Shao, Jonathan; Nemchinov, Lev G. (2019-07-31)The root lesion nematode (RLN), Pratylenchus penetrans, is a migratory species that attacks a broad range of crops, including alfalfa. High levels of infection can reduce alfalfa forage yields and lead to decreased cold tolerance. Currently, there are no commercially certified varieties with RLN resistance. Little information on molecular interactions between alfalfa and P. penetrans, that would shed light on mechanisms of alfalfa resistance to RLN, is available. To advance our understanding of the host-pathogen interactions and to gain biological insights into the genetics and genomics of host resistance to RLN, we performed a comprehensive assessment of resistant and susceptible interactions of alfalfa with P. penetrans that included root penetration studies, ultrastructural observations, and global gene expression profiling of host plants and the nematode. Several gene-candidates associated with alfalfa resistance to P. penetrans and nematode parasitism genes encoding nematode effector proteins were identified for potential use in alfalfa breeding programs or development of new nematicides. We propose that preformed or constitutive defenses, such as significant accumulation of tannin-like deposits in root cells of the resistant cultivar, could be a key to nematode resistance, at least for the specific case of alfalfa-P. penetrans interaction.
- Expanding the RNA virome of nematodes and other soil-inhabiting organismsVieira, Paulo; Subbotin, Sergei A.; Alkharouf, Nadim; Eisenback, Jonathan D.; Nemchinov, Lev G. (Oxford University Press, 2022-03-30)In recent years, several newly discovered viruses infecting free-living nematodes, sedentary plant-parasitic nematodes, and migratory root lesion nematodes have been described. However, to the best of our knowledge, no comprehensive research focusing exclusively on metagenomic analysis of the soil nematode community virome has thus far been carried out. In this work, we have attempted to bridge this gap by investigating viral communities that are associated with soil-inhabiting organisms, particularly nematodes. This study demonstrates a remarkable diversity of RNA viruses in the natural soil environment. Over 150 viruses were identified in different soil-inhabiting hosts, of which more than 139 are potentially new virus species. Many of these viruses belong to the nematode virome, thereby enriching our understanding of the diversity and evolution of this complex part of the natural ecosystem.
- An Expansin-Like Candidate Effector Protein from Pratylenchus penetrans Modulates Immune Responses in Nicotiana benthamianaVieira, Paulo; Nemchinov, Lev G. (2020-03)The root lesion nematode (RLN) Pratylenchus penetrans is a migratory species that attacks a broad range of crops. After the RLN is initially attracted to host roots by root exudates and compounds, it releases secretions that are critical for successful parasitism. Among those secretions are nematode virulence factors or effectors that facilitate the entry and migration of nematodes through the roots and modulate plant immune defenses. The recognition of the effectors by host resistance proteins leads to effector-triggered immunity and incompatible plant- nematode interactions. Although many candidate effectors of the RLN and other plant-parasitic nematodes have been identified, the detailed mechanisms of their functions and particularly, their host targets remain largely unexplored. In this study, we sequenced and annotated genes encoding expansin-like proteins, which are major candidate effectors of P. penetrans. One of the genes, Pp-EXPB1, which was the most highly expressed during nematode infection in different plant species, was further functionally characterized via transient expression in the model plant Nicotiana benthamiana and global transcriptome profiling of gene expression changes triggered by this candidate effector in plants. As a result of this investigation, the biological roles of Pp-EXPB1 in nematode parasitism were proposed, the putative cellular targets of the proteins were identified, and the molecular mechanisms of plant responses to the nematode-secreted proteins were outlined.
- Identification and characterization of the first pectin methylesterase gene discovered in the root lesion nematode Pratylenchus penetransVicente, Cláudia S. L.; Nemchinov, Lev G.; Mota, Manuel; Eisenback, Jonathan D.; Kamo, Kathryn; Vieira, Paulo (Public Library of Science, 2019-02-22)Similar to other plant-parasitic nematodes, root lesion nematodes possess an array of enzymes that are involved in the degradation of the plant cell wall. Here we report the identification of a gene encoding a cell wall-degrading enzyme, pectin methylesterase PME (EC 3.1.1.11), in the root lesion nematode Pratylenchus penetrans. Both genomic and coding sequences of the gene were cloned for this species, that included the presence of four introns which eliminated a possible contamination from bacteria. Expression of the Pp-pme gene was localized in the esophageal glands of P. penetrans as determined by in situ hybridization. Temporal expression of Pp-pme in planta was validated at early time points of infection. The possible function and activity of the gene were assessed by transient expression of Pp-pme in plants of Nicotiana benthamiana plants via a Potato virus X-based vector. To our knowledge, this is the first report on identification and characterization of a PME gene within the phylum Nematoda. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
- A new esophageal gland transcriptome reveals signatures of large scale de novo effector birth in the root lesion nematode Pratylenchus penetransVieira, Paulo; Shao, Jonathan; Vijayapalani, Paramasivan; Maier, Thomas R.; Pellegrin, Clement; Eves-van den Akker, Sebastian; Baum, Thomas J.; Nemchinov, Lev G. (2020-10-23)Background The root lesion nematode Pratylenchus penetrans is a migratory plant-parasitic nematode responsible for economically important losses in a wide number of crops. Despite the importance of P. penetrans, the molecular mechanisms employed by this nematode to promote virulence remain largely unknown. Results Here we generated a new and comprehensive esophageal glands-specific transcriptome library for P. penetrans. In-depth analysis of this transcriptome enabled a robust identification of a catalogue of 30 new candidate effector genes, which were experimentally validated in the esophageal glands by in situ hybridization. We further validated the expression of a multifaceted network of candidate effectors during the interaction with different plants. To advance our understanding of the “effectorome” of P. penetrans, we adopted a phylogenetic approach and compared the expanded effector repertoire of P. penetrans to the genome/transcriptome of other nematode species with similar or contrasting parasitism strategies. Our data allowed us to infer plausible evolutionary histories that shaped the effector repertoire of P. penetrans, as well as other close and distant plant-parasitic nematodes. Two remarkable trends were apparent: 1) large scale effector birth in the Pratylenchidae in general and P. penetrans in particular, and 2) large scale effector death in sedentary (endo) plant-parasitic nematodes. Conclusions Our study doubles the number of validated Pratylenchus penetrans effectors reported in the literature. The dramatic effector gene gain in P. penetrans could be related to the remarkable ability of this nematode to parasitize a large number of plants. Our data provide valuable insights into nematode parasitism and contribute towards basic understating of the adaptation of P. penetrans and other root lesion nematodes to specific host plants.
- A novel species of RNA virus associated with root lesion nematode Pratylenchus penetransVieira, Paulo; Nemchinov, Lev G. (2019-04)The root lesion nematode Pratylenchus penetrans is a migratory species that attacks a broad range of plants. While analysing transcriptomic datasets of P. penetrans, we have identified a full-length genome of an unknown positive-sense singlestranded RNA virus, provisionally named root lesion nematode virus 1 (RLNV1). The 8614-nucleotide genome sequence encodes a single large polyprotein with conserved domains characteristic for the families Picornaviridae, Iflaviridae and Secoviridae of the order Picornavirales. Phylogenetic, BLAST and domain search analyses showed that RLNV1 is a novel species, most closely related to the recently identified sugar beet cyst nematode virus 1 and potato cyst nematode picornalike virus. In situ hybridization with a DIG-labelled DNA probe confirmed the presence of the virus within the nematodes. A negative-strand-specific RT-PCR assay detected RLNV1 RNA in nematode total RNA samples, thus indicating that viral replication occurs in P. penetrans. To the best of our knowledge, RLNV1 is the first virus identified in Pratylenchus spp.
- Prevalence of the root lesion nematode virus (RLNV1) in populations of Pratylenchus penetrans from North AmericaVieira, Paulo; Peetz, Amy; Mimee, Benjamin; Saikai, Kanan; Mollov, Dimitre; MacGuidwin, Ann; Zasada, Inga; Nemchinov, Lev G. (2020-05-18)Root lesion nematode virus 1 (RLNV1) was discovered in the migratory endoparasitic nematode species Pratylenchus penetrans. It was found in a P. penetrans population collected from soil samples in Beltsville, Maryland, USA. In this study, the distribution of the RLNV1 in 31 geographically distinct P. penetrans populations obtained from different crops was examined. The results demonstrate that RLNV1 is widespread in North American populations of P. penetrans and exhibits low genetic variability in the helicase and RNA-dependent RNA polymerase regions of the genome.
- The Root Lesion Nematode Effector Ppen10370 Is Essential for Parasitism of Pratylenchus penetransVieira, Paulo; Vicente, Cláudia S. L.; Branco, Jordana; Buchan, Gary; Mota, Manuel; Nemchinov, Lev G. (2021-06)The root lesion nematode Pratylenchus penetrans is a migratory species that attacks a broad range of crops. Like other plant pathogens, P. penetrans deploys a battery of secreted protein effectors to manipulate plant hosts and induce disease. Although several candidate effectors of P. penetrans have been identified, detailed mechanisms of their functions and particularly their host targets remain largely unexplored. In this study, a repertoire of candidate genes encoding pioneer effectors of P. penetrans was amplified from mixed life stages of the nematode, and candidate effectors were cloned and subjected to transient expression in a heterologous host, Nicotiana benthamiana, using potato virus X-based gene vector. Among seven analyzed genes, the candidate effector designated as Ppen10370 triggered pleiotropic phenotypes substantially different from those produced by wild type infection. Transcriptome analysis of plants expressing Ppen10370 demonstrated that observed phenotypic changes were likely related to disruption of core biological processes in the plant due to effector-originated activities. Cross-species comparative analysis of Ppen10370 identified homolog gene sequences in five other Pratylenchus species, and their transcripts were found to be localized specifically in the nematode esophageal glands by in situ hybridization. RNA silencing of the Ppen10370 resulted in a significant reduction of nematode reproduction and development, demonstrating an important role of the esophageal gland effector for parasitism.
- Snake River alfalfa virus, a persistent virus infecting alfalfa (Medicago sativa L.) in Washington State, USAPostnikova, Olga A.; Irish, Brian M.; Eisenback, Jonathan D.; Nemchinov, Lev G. (2023-02-19)Here we report an occurrence of Snake River alfalfa virus (SRAV) in Washington state, USA. SRAV was recently identified in alfalfa (Medicago sativa L.) plants and western flower thrips in south-central Idaho and proposed to be a first flavi-like virus identified in a plant host. We argue that the SRAV, based on its prevalence in alfalfa plants, readily detectable dsRNA, genome structure, presence in alfalfa seeds, and seed-mediated transmission is a persistent new virus distantly resembling members of the family Endornaviridae.