Browsing by Author "O'Keefe, Sean F."
Now showing 1 - 20 of 143
Results Per Page
Sort Options
- Acid and Volatiles of Commercially-Available Lambic BeersThompson Witrick, Katherine; Duncan, Susan E.; Hurley, E. Kenneth; O'Keefe, Sean F. (MDPI, 2017-10-26)Lambic beer is the oldest style of beer still being produced in the Western world using spontaneous fermentation. Gueuze is a style of lambic beer prepared by mixing young (one year) and older (two to three years) beers. Little is known about the volatiles and semi-volatiles found in commercial samples of gueuze lambic beers. SPME was used to extract the volatiles from nine different brands of lambic beer. GC-MS was used for the separation and identification of the compounds extracted with SPME. The pH and color were measured using standard procedures. A total of 50 compounds were identified in the nine brands. Seventeen of the 50 compounds identified have been previously identified. The compounds identified included a number of different chemical groups such as acids, alcohols, phenols, ketones, aldehydes, and esters. Ethyl acetate, 4-ethylphenol, and 4-ethylguaiacol are known by-products of the yeast, Brettanomyces, which is normally a spoilage microorganism in beer and wine, but important for the flavor characteristics of lambic beer. There were no differences in pH, but there were differences in color between the beer samples.
- Addition of Soybean Lipoxygenase to All-Purpose Flour and its Effects on Dough Gluten Strength and Bread QualityDanielson, Erin Marie (Virginia Tech, 2007-06-01)The goal of this research is to determine the effects of added soybean lipoxygenase (LOX) on bread dough rheological properties and physical properties of bread loaves compared to controls, and to determine sensory attributes of bread loaves using quantitative descriptive analysis (QDA). Protein fractions were obtained through the use of isoelectric precipitation. The pH 4.8 precipitate was found to yield the greatest LOX activity when compared with other fractions (p<0.05). The addition of pH 4.8 precipitate improved rheological properties of bread dough, examined in a farinograph, when compared to the all-purpose control (p<0.05). Addition of soy flour also increased the gluten strength of all-purpose flour (p<0.05). The addition of pH 4.8 precipitate to all-purpose flour did not improve bread loaf volume or texture. Sensory panelists described pH 4.8 supplemented bread as having firmer crumb when compared with controls (p<0.05). There were slight color differences among the loaves. The crust and crumb of bread flour loaves was lighter in color than any other sample. It was concluded that the addition of pH 4.8 precipitate to all-purpose flour greatly improved the rheological properties when compared with all-purpose flour alone.
- Allyl isothiocyanate reduces Salmonella enterica Michigan and Listeria monocytogenes on the surface of whole cantaloupe (Cucumis melo L.)Duckson, Margaret Anne (Virginia Tech, 2014-04-24)Since 2006 there have been four Salmonella enterica and one Listeria monocytogenes foodborne outbreaks linked to whole cantaloupe fruit. No post-harvest intervention to reduce potential contamination on cantaloupe currently exists. The complex surface topography of netted cantaloupes aids bacterial attachment. This research evaluates the use of allyl isothiocyanate (AITC; a natural antimicrobial) to reduce populations of S. enterica Michigan and L. monocytogenes on the surface of cantaloupe. Fifty μl of S. Michigan or L. monocytogenes was inoculated onto whole ‗Athena‘ or ‗Hales Best Jumbo‘ (‗HBJ‘) cantaloupe fruit in 22 mm diameter circles and allowed to dry for 90 min. resulting in 6.60 log CFU/g. Cantaloupe received either AITC liquid or vapor, sterile deionized water, 200 ppm sodium hypochlorite per circle, or no treatment. All cantaloupes were stored in separate sealed glass desiccators for 1 or 24 h at 25°C or 35°C. To enumerate the bacteria following treatment, 22 mm sections of the rind were removed, homogenized and plated onto appropriate agar. Headspace analysis using Gas Chromatography-Mass Spectrometry (GC-MS) quantified the concentration of each AITC vapor treatment. The texture quality of the pericarp tissue of whole cantaloupes was evaluated after 24 h treatments, followed by two weeks of storage at 4°C. The concentration of vapor ranged from 3.4 to 19.6 μl AITC/L inside the desiccators. The liquid treatment reduced (P < 0.05) S. Michigan populations on ‗Athena‘ (3 log CFU/g) and L. monocytogenes on ‗HBJ‘ (2.6 log CFU/g). The longer exposure time to the AITC vapor (24 h versus 1 h) resulted in a greater reduction of both S. Michigan and L. monocytogenes on ‗Athena‘ and treatments at 35°C reduced microbial populations up to 4.5 times greater (P < 0.05). The highest vapor concentration reduced (P < 0.05) both pathogens at least 3.0 log CFU/g on ‗Athena‘ at 25°C. Generally, bacterial pathogens from the surface of ‗Athena‘ cantaloupe were reduced more than pathogens inoculated on the surface of ‗HBJ.‘ The application of AITC liquid or vapor is a natural alternative post-harvest treatment to 200 ppm free chlorine to reduce the level of bacterial contamination on cantaloupe surfaces for certified organic production.
- Amorphous solid dispersion effects on in vitro solution concentrations of quercetinGilley, Andrew (Virginia Tech, 2016-08-31)Quercetin is a flavonol with potential health benefits including activities against cardiovascular disease, obesity, and oxidative stress. However, the benefits of quercetin are likely limited by poor bioavailability, primarily attributed to its poor aqueous solubility (due to its hydrophobicity and crystallinity) and extensive phase-II metabolism. Improving the apparent solubility of quercetin has the potential to improve its in vivo bioavailability. Strategies to increase solution concentrations in the small intestinal lumen have the potential to substantially increase quercetin bioavailability, and efficacy. We aimed to achieve this by incorporating quercetin into amorphous solid dispersions (ASDs) with cellulose derivatives, eliminating crystallinity, and selectively releasing amorphous quercetin under simulated intestinal conditions (pH 6.8, 37C). Amorphous quercetin was dispersed in cellulose esters including 6-carboxycellulose acetate butyrate (CCAB), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and cellulose acetate suberate (CASub) to achieve stability and provide pH-triggered release. In addition, polyvinylpyrrolidone (PVP) containing CASub and CCAB blends were prepared to further promote enhanced dissolution. The ASD employing 10% quercetin in 20% PVP:70% CASub was most successful at enhancing the solution concentration of quercetin, providing an 18-fold increase in the area under the concentration/time curve (AUC) compared to quercetin alone. These results warrant in vivo assessment of quercetin-loaded ASDs formulated with CASub and its blend with PVP towards improving the bioavailability of quercetin.
- Analysis of crab meat volatiles as possible spoilage indicators for blue crab (Callinectes sapidus) meat by gas chromatography-mass spectrometrySarnoski, Paul J.; O'Keefe, Sean F.; Jahncke, Michael L.; Mallikarjunan, Parameswarakumar; Flick, George J. Jr. (Elsevier, 2010-10-01)Traditionally crab meat spoilage has been evaluated using sensory panels. A method was developed using solid-phase microextraction–gas chromatography–mass spectrometry (SPME–GC–MS) to examine the aroma profile of blue crab (Callinectes sapidus) for chemical indicators of spoilage. The chemicals found to correlate best with spoilage were trimethylamine (TMA), ammonia, and indole over a period of 7 days. In addition, chemicals previously not identified in the aroma profile of blue crab were tentatively detected. Scan mode of the mass spectrometer was used to qualitatively determine compounds extracted from the volatile profile of spoiling blue crab by the SPME fiber. Selected ion monitoring (SIM) mode of the mass spectrometer improved resolution, identified compounds at low concentrations, and allowed spoilage related compounds to be detected in one chromatographic run without sample heating. TMA increased linearly. A significant difference in TMA concentrations were found for day 0 and day 4 samples. Indole concentrations corresponded well with sensory and microbial evaluations, in early, mid, and highly spoiled crab meat samples.
- Analysis of Lambic Beer Volatiles during Aging Using Gas Chromatography–Mass Spectrometry (GCMS) and Gas Chromatography–Olfactometry (GCO)Witrick, Katherine; Pitts, Eric R.; O'Keefe, Sean F. (MDPI, 2020-05-11)Lambic beer is produced using spontaneous fermentation. Gueuze is a style of lambic beer that blends “young” (1 year old) and “aged” (2+ years old) beers. Little is known about the development of volatile aroma compounds in lambic beer during aging. Solid-phase microextraction and gas chromatography–mass spectrometry were used to analyze volatile compounds from 3, 6, 9, 12, and 28-month-old commercial samples of lambic beer. Compounds were identified using standardized retention time and mass spectra of standards. Gas chromatography–olfactometry was used to characterize the aroma profiles of the samples. A total of 41 compounds were identified using gas chromatography–mass spectrometry (GC–MS). Ethyl lactate, ethyl acetate, 4-ethylphenol and 4-ethylguaiacol were identified in the 9, 12, and 28-month old samples. These four compounds have been linked to the microorganism Brettanomyces. Twenty-one aroma active compounds were identified using Gas chromatography–olfactometry (GC–O). As the age of the gueuze samples increased, a larger number of aroma compounds were identified by the panelists; the compounds identified increased from seven for the 3-month-old samples to nine for the 6-month-old samples, and eleven for both the nine and twelve-month-old samples, and seventeen for the twenty-eight-month-old samples.
- Analysis of volatile compounds, proximate composition, and fatty acids in Pacific bluefin tuna (Thunnus orientalis)James, Cierra Alisha (Virginia Tech, 2022-06-07)Pacific bluefin tuna (PBT; Thunnus orientalis) has grown significantly in popularity in recent years due to the globalization of Japanese cuisine. PBT is highly sought after for sushi and sashimi products due to its great quality and taste. Wild populations of this species have been affected by their increasing popularity, pushing innovators in the food industry to create meat alternative versions of PBT. The muscle composition of PBT varies, leading to different types (cuts) of meat in a way that is analogous to various cuts of beef. This study evaluated the differentiation amongst the 6 distinct cuts, including otoro, ventral akami, dorsal akami, ventral chu-toro, dorsal chu-toro, and wakaremi conducting volatile analysis, proximate analysis, and fatty acid analysis. The results from these analyses can then be used as a base standard for companies seeking to create alternatives versions of PBT. Samples analyzed in this study were cultured PBT species that were caught as juveniles and raised in captivity on a PBT farm in Mexico. Volatile analysis was conducted using a SPME GC/MS method. Overall, 41 aroma compounds were identified in PBT that met the identification criteria, including 9 aldehydes, 7 alcohols, 14 alkanes, 2 ketones, 4 alkenes, 3 aromatic compounds, and 2 miscellaneous compounds. Proximate analyses were conducted using standard methods. Significant differences (p <0.05) were found between each cut for the proximate analysis. The fatty acid analysis determined that there were twenty-two identifiable fatty acids found in the different cuts. The omega-3 fatty acids eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) with DHA being present at a higher amount than EPA in each cut. Overall, there are similarities and differences among the different cuts of bluefin tuna that researchers would need to mimic to provide adequate nutritional and sensorial properties of PBT.
- Anti-Diabetic and Anti-Obesity Activities of Cocoa (Theobroma cacao) via Physiological Enzyme InhibitionRyan, Caroline Mary (Virginia Tech, 2016-06-01)Fermentation and roasting of cocoa (Theobroma cacao) decrease levels of polyphenolic flavanol compounds. However, it is largely unknown how these changes in polyphenol levels caused by processing affect cocoa's anti-diabetic and anti-obesity bioactivities, such as inhibition of certain enzymes in the body. Polyphenol profiles, protein-binding abilities, presence of compounds termed oxidative polymers, and abilities to inhibit α-glucosidase, pancreatic α-amylase, lipase, and dipeptidyl peptidase-IV (DPP4) in vitro were compared between unfermented bean (UB), fermented bean (FB), unfermented liquor (UL), and fermented liquor (FL) cocoa extracts. Overall, there were significant decreases (p<0.05) in total polyphenols, flavanols, and anthocyanins between the two sets of unfermented and fermented cocoa extracts (CEs). All CEs effectively inhibited α-glucosidase (lowest IC50 = 90.0 ug/mL for UL) and moderately inhibited α-amylase (lowest IC50=183 ug/mL for FL), lipase (lowest IC25=65.5 ug/mL for FB), and DPP4 (lowest IC25=1585 ug/mL for FB) in dose-dependent manners. Fermentation and roasting of the samples affected inhibition of each enzyme differently (both processes enhanced α-amylase inhibition). Improved α-glucosidase and α-amylase inhibitions were correlated with presence of different classifications of oxidative polymers, suggesting that these compounds could be contributing to the bioactivities observed. Some α-glucosidase inhibition might be due to non-specific protein-binding. Improved DPP4 inhibition was strongly correlated to increased CE degree of polymerization. In conclusion, potential enzyme inhibition activities of cocoa were not necessarily negatively affected by the large polyphenol losses that occur during fermentation and roasting. Additionally, it is possible that more complex compounds could be present in cocoa that contribute to its potential anti-diabetic and anti-obesity bioactivities.
- Antibacterial activity of jalapeño pepper (Capsicum annuum var. annuum) extract fractions against select foodborne pathogensBacon, Karleigh; Boyer, Renee R.; Denbow, Cynthia J.; O'Keefe, Sean F.; Neilson, Andrew P.; Williams, Robert (Wiley, 2017-01)Capsicum annuum fruits have been investigated for antimicrobial activity in a number of studies. Capsaicin or other cinnamic acid pathway intermediates are often suggested to be the antimicrobial component, however there are conflicting results. No research has specifically fractionated jalapeño pepper (Capsicum annuum var. annuum) extract to isolate and identify compound(s) responsible for inhibition. In this study, fractions were collected from jalapeño pepper extracts using reverse-phase HPLC and tested for antibacterial activity using the disk diffusion method. Following initial fractionation, two fractions (E and F) displayed antibacterial activity against all three pathogens (p > .05). Commercial standards were screened to determine when they elude and it was found that capsaicin elutes at the same time as fraction E. Fractions E and F were subject to further HPLC fractionation and antibacterial analysis using two methods. The only fraction to display clear inhibition using both was fraction E1, inhibiting the growth of L. monocytogenes. Fraction E1 was analyzed using HPLC-MS. The resulting mass spectra revealed fraction E1 contained compounds belonging to a group of C. annuum-specific compounds known as capsianosides. Limited research is available on antibacterial activity of capsianosides, and a pure commercial standard is not available. In order to confirm the potential antimicrobial activity of the compound(s) isolated, methods need to be developed to isolate and purify capsianosides specifically from jalapeño peppers.
- Antioxidant Activity of Ampelopsis Grossedentata Crude Extract and its Major Component DihydromyricetinYe, Liyun (Virginia Tech, 2011-07-12)Oxidation limits the shelf life of many food products. Adding antioxidants to foods is the most common way to solve this problem. Reports on safety issues of synthetic food additives have raised consumer interest in "all natural" foods, without added antioxidants or with synthetic replaced with natural antioxidants. The natural antioxidants now in use are much more expensive and less potent than the synthetic antioxidants. Thus, effective and economical natural antioxidants are of great interest to researchers. Teng Cha is a type of herbal tea found in China that has reported high levels of antioxidants. Antioxidant activity of Teng Cha extract and its major component dihydromyricetin has been reported, but no studies have provided clear evidence for the antioxidant effectiveness of Tech Cha extracts. The goal of this study was to measure the antioxidant activity of Teng Cha extract and dihydromyricetin (DHM), a major component of Tech Cha extract. The DPPH assay was conducted and antioxidant activities of the crude extract and dihydromyricetin were evaluated in soybean oil based on the peroxide value, anisidine value, Totox value, headspace volatiles and headspace oxygen. Antioxidant effectiveness was also evaluated in a cooked beef model system. DHM was more potent than BHA in preventing soybean oil oxidation. The crude extract was not as effective as BHA and DHM, possibly because it contained transition metals. In cooked beef, DHM and the crude extract showed lower activity than BHA, possibly due to their low solubility. Overall, Teng Cha extract and DHM are potential natural food antioxidants for future applications.
- The Antioxidant Function of Lutein in Controlling Photo-Oxidation of a Colloidal Beverage SystemKline, Mark Alan (Virginia Tech, 2006-12-13)The effect of light on a model colloidal beverage system under two different test conditions, refrigerated storage (14 d, 4°C) and accelerated storage at room temperature (12 hr, 25°C), was investigated. The addition of lutein to provide protection against photo-oxidation of susceptible compounds also was investigated. Fluorescent light-exposure (14 d, 4°C) of the control beverage system led to a decline in sensory quality based on triangle test results. Sensory quality also declined in the lutein-fortified beverage due to light-exposure. Sensory quality of light-exposed, lutein-fortified beverage compared to the light-protected control did not yield significant sensory differences for two out of three replications giving positive implications towards the use of lutein for photo-protection. Overall, panelists preferred beverages that were protected from light exposure with no specific preference towards control or lutein-fortified beverage, indicating lutein did not inhibit photo-chemical reactions leading to a decline in sensory quality. Chemical analysis showed limonene concentration was significantly higher in the lutein-fortified beverage compared to the control beverage after light exposure (14 d, 4°C). Hexanal concentration, however, was not closely correlated with sensory differences. Results of the accelerated storage (12 hr, 25°C) study showed that the most damaging wavelengths to lutein stability were UV (200-400 nm) and 463 nm wavelengths. Degradation of lutein at 463 nm was expected and can be attributed to lutein''s absorption of blue light at 450 nm. Hexanal formation was highest in the control beverage when exposed to full spectrum light and specifically UV (200-400 nm) wavelengths. Hexanal was also formed in the lutein-fortified beverage under full spectrum light and UV (200-400 nm) wavelength but to a significantly lesser degree. Limonene degraded significantly under all treatment conditions, with the most occurring during full spectrum light exposure. Lutein-fortification did not effectively protect limonene from degradation under these conditions.
- Antioxidant Protection of an Omega-3 Fatty Acid Fortified Dairy-Based BeverageMoore, Robert Lee (Virginia Tech, 2009-12-08)Skim, butter-derived aqueous phase, anhydrous milk fat, and fish oil were used to formulate ultra high temperature (UHT) processed extended shelf-life omega-3 fatty acid fortified dairy-based beverages with fat contents mimicking whole milk (3.25%). Oxidation of the lipids in the formulated beverages was investigated during storage for 35 days at 4 °C using GC/MS analysis, conjugated diene analysis, and headspace solid phase micro-extraction GC/MS (SPME-GC/MS) analysis of headspace. Omega-3 fatty acid fortified dairy-based beverages were produced that mimicked the physical properties of 3.25% fat whole milk. Oxidation resulted in only small changes in omega-3 lipid content and sensory analysis by an untrained panel indicated that the overall aroma was no different than that of commercially available UHT processed milk. An omega-3 fatty acid fortified dairy-based beverage was produced that delivered 440mg of omega-3 fatty acid per 8oz serving. When consumed daily, the beverage could provide the equivalent amount of omega-3 fatty acids recommended by the American Heart Association, and the equivalent amount of omega-3 fatty acids found in two fatty fish meals over the period of one week. Antioxidants were added to the lipid phase, immediately prior to processing, of additionally produced formulations to determine if a reduction in omega-3 lipid oxidation was observed. No overall reduction in oxidation was observed, as indicated by GC/MS and SPME-GC/MS analysis. Sensory analysis indicated that oxidative aromas increased during storage for the antioxidant and omega-3 fatty acid fortified dairy-based beverage. Ascorbyl palmitate was determined to have a pro-oxidative effect on the formulated omega-3 fortified dairy-based beverages. Antioxidants present in the commercial grade fish oil used for fortification were effective in controlling oxidation in the formulated omega-3 fatty acid fortified dairy-based beverages.
- Application and Characterization of Bioactive Compounds in Peanut Skins, a Waste Product of Virginia AgricultureSarnoski, Paul J. (Virginia Tech, 2010-12-07)Peanut skins have long been a waste product of the peanut industry. The aim of this project was to find suitable applications for this rich source of natural bioactive compounds. Solvent extracts of peanut skins and a multistep solvent extraction process to yield oligiomeric procyanidin (OPC) extracts were found to be inhibitory towards three types of yeasts (Saccharomyces cerevisiae, Zygosaccharomyces bailli, and Zygosaccharomyces bisporus). All extracts were devoid of solvents that may have interfered with the results. The OPC extract exhibited the highest inhibitory effect, and was chosen for fractionation. Fractionation was conducted by means of a silica or size exclusion high performance liquid chromatography (HPLC) column. Fractions were then subjected to a yeast growth curve assay to determine the active fractions. The fractions were then characterized by liquid chromatography-mass spectrometry (LC-MS). Negative mode electrospray MS determined the fractions to contain mostly procyanidins but also proanthocyanidins. Since it is possible for multiple compounds to display the same molecular ion, multistep MS and retention time differences were utilized to tentatively identify the compounds based upon their fragmentation schemes. However, co-elution was prominent, thus specific compounds responsible for yeast growth inhibition could not be determined. The yeast inhibition assay demonstrated that the procyanidin dimers up to tetramers had the best anti-yeast capabilities.
- Application of Automated Facial Expression Analysis and Facial Action Coding System to Assess Affective Response to Consumer ProductsClark, Elizabeth A. (Virginia Tech, 2020-03-17)Sensory and consumer sciences seek to comprehend the influences of sensory perception on consumer behaviors such as product liking and purchase. The food industry assesses product liking through hedonic testing but often does not capture affectual response as it pertains to product-generated (PG) and product-associated (PA) emotions. This research sought to assess the application of PA and PG emotion methodology to better understand consumer experiences. A systematic review of the existing literature was performed that focused on the Facial Action Coding System (FACS) and its use to investigate consumer affect and characterize human emotional response to product-based stimuli, which revealed inconsistencies in how FACS is carried out as well as how emotional response is inferred from Action Unit (AU) activation. Automatic Facial Expression Analysis (AFEA), which automates FACS and translates the facial muscular positioning into the basic universal emotions, was then used in a two-part study. In the first study (n=50 participants), AFEA, a Check-All-That-Apply (CATA) emotions questionnaire, and a Single-Target Implicit Association Test (ST-IAT) were used to characterize the relationship between PA as well as PG emotions and consumer behavior (acceptability, purchase intent) towards milk in various types of packaging (k=6). The ST-IAT did not yield significant PA emotions for packaged milk (p>0.05), but correspondence analysis of CATA data produced PA emotion insights including term selection based on arousal and underlying approach/withdrawal motivation related to packaging pigmentation. Time series statistical analysis of AFEA data provided increased insights on significant emotion expression, but the lack of difference (p>0.05) between certain expressed emotions that maintain no related AUs, such as happy and disgust, indicates that AFEA software may not be identifying AUs and determining emotion-based inferences in agreement with FACS. In the second study, AFEA data from the sensory evaluation (n=48 participants) of light-exposed milk stimuli (k=4) stored in packaging with various light-blocking properties) underwent time series statistical analysis to determine if the sensory-engaging nature of control stimuli could impact time series statistical analysis of AFEA data. When compared against the limited sensory engaging (blank screen) control, contempt, happy, and angry were expressed more intensely (p<0.025) and with greater incidence for the light-exposed milk stimuli; neutral was expressed exclusively in the same manner for the blank screen. Comparatively, intense neutral expression (p<0.025) was brief, fragmented, and often accompanied by intense (albeit fleeting) expressions of happy, sad, or contempt for the sensory engaging control (water); emotions such as surprised, scared, and sad were expressed similarly for the light-exposed milk stimuli. As such, it was determined that care should be taken while comparing the control and experimental stimuli in time series analysis as facial activation of muscles/AUs related to sensory perception (e.g., chewing, smelling) can impact the resulting interpretation. Collectively, the use of PA and PG emotion methodology provided additional insights on consumer-product related behaviors. However, it is hard to conclude whether AFEA is yielding emotional interpretations based on true facial expression of emotion or facial actions related to sensory perception for consumer products such as foods and beverages.
- Application of Automated Facial Expression Analysis and Qualitative Analysis to Assess Consumer Perception and Acceptability of Beverages and WaterCrist, Courtney Alissa (Virginia Tech, 2016-04-27)Sensory and consumer sciences aim to understand the influences of product acceptability and purchase decisions. The food industry measures product acceptability through hedonic testing but often does not assess implicit or qualitative response. Incorporation of qualitative research and automated facial expression analysis (AFEA) may supplement hedonic acceptability testing to provide product insights. The purpose of this research was to assess the application of AFEA and qualitative analysis to understand consumer experience and response. In two studies, AFEA was applied to elucidate consumers emotional response to dairy (n=42) and water (n=46) beverages. For dairy, unflavored milk (x=6.6±1.8) and vanilla syrup flavored milk (x=5.9±2.2) (p>0.05) were acceptably rated (1=dislike extremely; 9=like extremely) while salty flavored milk (x=2.3±1.3) was least acceptable (p<0.05). Vanilla syrup flavored milk generated emotions with surprised intermittently present over time (10 sec) (p<0.025) compared to unflavored milk. Salty flavored milk created an intense disgust response among other emotions compared to unflavored milk (p<0.025). Using a bitter solutions model in water, an inverse relationship existed with acceptability as bitter intensity increased (rs=-0.90; p<0.0001). Facial expressions characterized as disgust and happy emotion increased in duration as bitter intensity increased while neutral remained similar across bitter intensities compared to the control (p<0.025). In a mixed methods analysis to enumerate microbial populations, assess water quality, and qualitatively gain consumer insights regarding water fountains and water filling stations, results inferred that water quality differences did not exist between water fountains and water filling stations (metals, pH, chlorine, and microbial) (p>0.05). However, the exterior of water fountains were microbially (8.8 CFU/cm^2) and visually cleaner than filling stations (10.4x10^3 CFU/cm^2) (p<0.05). Qualitative analysis contradicted quantitative findings as participants preferred water filling stations because they felt they were cleaner and delivered higher quality water. Lastly, The Theory of Planned Behavior was able to assist in understanding undergraduates' reusable water bottle behavior and revealed 11 categories (attitudes n=6; subjective norms n=2; perceived behavioral control n=2; intentions n=1). Collectively, the use of AFEA and qualitative analysis provided additional insight to consumer-product interaction and acceptability; however, additional research should include improving the sensitivity of AFEA to consumer product evaluation.
- Assessing Consumer Preferences and Intentions to Buy Edamame Produced in the USCarneiro, Renata C. V.; Drape, Tiffany A.; Neill, Clinton L.; Zhang, Bo; O'Keefe, Sean F.; Duncan, Susan E. (Frontiers, 2022-01-18)Due to the growing consumer demand for edamame (vegetable soybean) in the U.S., the domestic production of this specialty crop has been promoted in several Mid-Atlantic and Southeast states as an economically attractive alternative to replace the decreasing tobacco production. For the edamame agrobusiness to be successful in the U.S., consumer studies are as needed as new commercial cultivars that are developed for the U.S. environment. Thus, in this exploratory study, we investigated consumers' preferences and intentions to buy edamame products in the U.S., especially domestic products. Data was collected through a web-based survey distributed through Qualtrics(XM) and a convenience sampling method was chosen. Volunteers who completed the survey (N = 309) were 82% female, 57% residents of the South Atlantic area, and 79% daily consumers of vegetables. Survey respondents had a positive attitude toward domestically produced vegetables and valued supporting U.S. producers. Overall, domestically grown, in-shell edamame products were preferred compared to shelled edamame or imported products. Regarding future purchasing, respondents exhibited higher intention to buy fresh edamame relative to frozen edamame. Additionally, respondents considered price, availability, and familiarity with the vegetable brand, respectively, as the most important factors in their decision-making process to buy edamame products. Our study confirmed there is a market potential for domestically produced edamame and it also provides valuable information to support future studies, production decisions, and the growth of the edamame agrobusiness in the U.S.
- Association of foodborne pathogens with Capsicum annuum fruit and evaluation of the fruit for antimicrobial compoundsHuff, Karleigh Rose (Virginia Tech, 2011-09-07)Hot peppers are gaining popularity in the United States as both a vegetable and a spice. In 2008, jalapeño peppers were involved in a multistate outbreak of Salmonella Saintpaul. This is the first outbreak implicating jalapeño as a vehicle for foodborne illness. Hot peppers contain many compounds thought to possess antimicrobial characteristics. This research was conducted to provide more information on the interactions of pathogenic bacteria and jalapeño peppers, as well as to identify properties of Capsicum annuum that affect bacterial survival, growth, and inhibition. Behavior of pathogens associated with jalapeños was investigated by inoculating jalapeño fruits with a cocktail of Listeria monocytogenes, Salmonella enterica, or Escherichia coli O157:H7 on the intact external surface, injured external surface, or intact internal cavity and storing the jalapeños at 7°C or 12°C. Intact external jalapeñosurfaces did not support the growth of the bacteria tested under storage conditions of 7°C. However, L. monocytogenes populations remained detectable throughout the 2 week study. At 7°C, pathogenic bacteria were able to survive but not grow on injured and internally inoculated jalapeño, but populations increased at 12°C (p=0.05). The most supportive growth environment for the pathogenic bacteria was the internal cavity of jalapeño held at 12°C. This study demonstrated the importance of intact uninjured produce and proper storage temperatures for food microbial safety. Inhibitory properties of jalapeños were studied by making extracts from fresh jalapeño peppers to test for antimicrobial activity. A disk diffusion assay determined that the extracts were capable of inhibiting the growth of the pathogenic bacteria tested. Listeria monocytogenes was especially sensitive to the extracts. jalapeño extracts were fractionated using HPLC and used for inhibition assays using disk diffusion and growth curve generation. Two fractions stimulated bacterial growth (p=0.05), while two other fractions inhibited bacterial growth. The inhibitory fractions were separated further using HPLC and tested for antimicrobial activity. Fraction E1 suppressed the growth of L. monocytogenes. HPLC-MS analysis revealed that Fraction E1 contained compounds known as capsianosides. To prove that inhibition is caused by capsianoside(s) and determine minimum inhibitory concentrations, a method to isolate the pure compound should be developed.
- Binding of volatile aroma compounds to can linings with different polymeric characteristicsYou, Xiaorong; O'Keefe, Sean F. (Wiley, 2017)Flavor compounds have been shown to interact with packaging materials either by scalping, the movement of flavorings from the food product to the package, or by flavor release, movement of flavorings from the package to the food. Work has elucidated the parameters important for the scalping of flavor compounds to polyolefin packaging materials, but very little work has been conducted examining the scalping of flavor compounds by can lining materials. Can linings composed of three different polymers, polyolefin, acrylic, epoxy, were studied for binding of volatile flavor compounds (octanal, nonanal, decanal, eugenol, 𝘥-limonene) at room temperature over a 2-week period. Solid phase microextraction (SPME) was used with gas chromatography mass spectrometry to identify and quantify volatile compounds. Flavor compounds were studied at concentrations around 4–1,000 ppb. Fourier transform infrared spectroscopy was used to verify can lining polymer chemistry. Almost complete binding of all five of the volatile compounds studied was observed over 9–14 days at room temperature for each of the can lining chemistries. The number of time data points limited our ability to determine the order and rate constants of binding. This model system appears to be a valuable for investigating flavor binding of polymeric can lining materials.
- Changes in Aromatic Chemistry and Sensory Quality of Milk Due to Light WavelengthWebster, Janet B. (Virginia Tech, 2006-11-09)Gas chromatography (GC) and gas chromatography olfactometry (GCO) was used to determine the effect of specific light wavelengths on light oxidation in milk. The most damaging wavelengths to milk quality appear to be the UV (200-400 and 395 nm) and short visible (463 nm) wavelengths. However, exposure to 610 nm also appears to be damaging. GC and GCO were also used to look at the efficacy of film over-wraps made from iridescent films. Single-layer over-wraps were not as effective in reducing light oxidation as multi-layer film over-wraps. Single-layer over-wrap treatments had higher numbers of odor-active compounds than multi-layer over-wrap treatments with a number of odor-active compounds detected consistently in single-layer over-wrap treatments but not in the multi-layer over-wrap treatments. Concentrations of volatile compounds were slightly lower in the multilayer treatments. Multi-layer film over-wrap treatments were tested for light oxidation flavor intensity with a balanced incomplete block multi-sample difference test using a ranking system and a trained panel. Packaging over-wraps limited the production of light oxidation flavor in milk over time but not to the same degree as the complete light block. Blocking all visible riboflavin excitation wavelengths was better at reducing light oxidation flavor than blocking only a single visible excitation wavelength. A method to determine light oxidation in oil using Fourier Transform Infrared (FTIR) spectroscopy was established and preliminary data is presented.
- Changes in flavor volatile composition of oolong tea after panning during tea processingSheibani, E.; Duncan, Susan E.; Kuhn, D. D.; Dietrich, Andrea M.; Newkirk, J. J.; O'Keefe, Sean F. (2016-05)Panning is a processing step used in manufacturing of some varieties of oolong tea. There is limited information available on effects of panning on oolong tea flavors. The goal of this study was to determine effects of panning on flavor volatile compositions of oolong using Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Olfactometry (GC-O). SDE and SPME techniques were applied for extraction of volatiles in panned and unpanned teas. A total of 190 volatiles were identified from SDE and SPME extractions using GC-MS and GC-O. There were no significant differences (P > 0.05) in aldehyde or terpene contents of unpanned and panned tea. However, alcohols, ketones, acids and esters contents were significantly reduced by panning. Among 12 major volatiles previously used for identification and quality assessment of oolong tea, trans nerolidol, 2- hexenal, benzaldehyde, indole, gernaiol, and benzenacetaldehyde contents were significantly decreased (P < 0.05) by panning. Panning increased (P < 0.05) contents of linalool oxide, cis jasmone, and methyl salicylate. The GC-O study also showed an increase of aroma active compounds with sweet descriptions and decrease of aroma active compounds with fruity and smoky descriptions after panning. Panning significantly changes the volatile compositions of the tea and created new aroma active compounds. Results from this study can be used in quality assessment of panned oolong tea.