Browsing by Author "Painter, Michael Scott"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Characterizing the Role of Magnetic Cues Underlying Spatial BehaviorPainter, Michael Scott (Virginia Tech, 2017-01-09)In the 50+ years since the discovery of magnetic compass orientation by migratory songbirds, evidence for the use of magnetic cues has been obtained for a range of taxonomic groups, including several classes of vertebrate and invertebrate taxa. Surprisingly, however, the biophysical mechanisms and biological substrate that underlie magnetic sensing are still not fully understood. Moreover, while use of magnetic cues for compass orientation is intuitive, the functional significance of other forms of behavioral responses mediated by magnetic cues, such as spontaneous magnetic alignment, is less clear. The following research was carried out to investigate the mechanisms underlying magnetic orientation in vertebrates and invertebrates. This involved the modification of existing experimental systems to characterize responses to magnetic cues in laboratory animals (flies, mice) and the development of novel techniques for studying the role of magnetic cues in the spatial behavior of free-living animals (red foxes). Chapter II examines magnetic orientation in wild-type Drosophila melanogaster larvae. We show that three strains of larvae reared under non-directional ultraviolet (UV) light exhibit quadramodal spontaneous orientation along the anti-cardinal compass directions (i.e. northeast, southeast, southwest, northwest) when tested in a radially symmetrical environment under UV light. Double-blind experiments cancelling the horizontal component of the magnetic field confirmed that the response is dependent on magnetic cues rather non-magnetic features of the test environment. Furthermore, we argue that the larval quadramodal pattern of response is consistent with properties of magnetic compass orientation observed in previous studies of adult Drosophila and laboratory mice, both of which have been proposed to be mediated by a light-dependent magnetic compass mechanism. Chapter III explores the use of novel biologging techniques to collect behavioral and spatial data from free-roaming mammals. Specifically, a previous observational study of free- roaming red foxes found a 4-fold increase in the success of predatory 'mousing' attacks when foxes were facing ~north-northeast, consistent with magnetic alignment responses reported for a range of terrestrial animals. The authors propose that the magnetic field may be used to increase accuracy of mousing attacks. Using tri-axial accelerometer and magnetometer bio-loggers fitted to semi-domesticated red foxes, we created ']magnetic ethograms' from behavioral and magnetic machine learning algorithms 'trained'] to identify three discrete behaviors (i.e. foraging, trotting, and mousing-like jumps) from raw accelerometer signatures and to classify the magnetic headings of mousing-like jumps into 45° sectors from raw magnetometer data. The classifier's ability to accurately identify behaviors from a separate fox not used to train the algorithm suggests that these techniques can be used in future experiments to obtain reliable magnetic ethograms for free-roaming foxes. We also developed the first radio-frequency emitting collar that broadcasts in the low MHz frequency range shown to disrupt magnetic compass responses in a host of animals. The radio-frequency collars coupled with biologgers will provide a powerful tool to characterize magnetic alignment responses in predatory red foxes and can be adapted for use in studies of magnetic alignment and magnetic compass orientation in other free-roaming mammals. Chapter 3 discusses findings from a magnetic nest building assay involving male labratory mice. Mice trained to position nests in one of four directions relative to the magnetic field exhibited both learned magnetic compass responses and fixed magnetic nest positioning orientation consistent with northeast-southwest spontaneous magnetic alignment behavior previously reported for wild mice and bank voles. This is the first mammalian assay in which both learned magnetic compass orientation and spontaneous magnetic alignment were exhibited in the same species, and suggests that the use of magnetic cues in rodents may be more flexible that previously realized.
- Ectosymbionts alter spontaneous responses to the Earth’s magnetic field in a crustaceanLandler, Lukas; Skelton, James; Painter, Michael Scott; Youmans, Paul W.; Muheim, Rachel; Creed, Robert P.; Brown, Bryan L.; Phillips, John B. (Nature Publishing Group, 2019-02-28)Magnetic sensing is used to structure every-day, non-migratory behaviours in many animals. We show that crayfish exhibit robust spontaneous magnetic alignment responses. These magnetic behaviours are altered by interactions with Branchiobdellidan worms, which are obligate ectosymbionts. Branchiobdellidan worms have previously been shown to have positive effects on host growth when present at moderate densities, and negative effects at relatively high densities. Here we show that crayfish with moderate densities of symbionts aligned bimodally along the magnetic northeast-southwest axis, similar to passive magnetic alignment responses observed across a range of stationary vertebrates. In contrast, crayfish with high symbiont densities failed to exhibit consistent alignment relative to the magnetic field. Crayfish without symbionts shifted exhibited quadramodal magnetic alignment and were more active. These behavioural changes suggest a change in the organization of spatial behaviour with increasing ectosymbiont densities. We propose that the increased activity and a switch to quadramodal magnetic alignment may be associated with the use of systematic search strategies. Such a strategy could increase contact-rates with conspecifics in order to replenish the beneficial ectosymbionts that only disperse between hosts during direct contact. Our results demonstrate that crayfish perceive and respond to magnetic fields, and that symbionts influence magnetically structured spatial behaviour of their hosts. © 2019, The Author(s).
- Magnetic alignment enhances homing efficiency of hunting dogsBenediktova, Katerina; Adamkova, Jana; Svoboda, Jan; Painter, Michael Scott; Bartos, Ludek; Novakova, Petra; Vynikalova, Lucie; Hart, Vlastimil; Phillips, John; Burda, Hynek (2020-06-16)Despite anecdotal reports of the astonishing homing abilities in dogs, their homing strategies are not fully understood. We equipped 27 hunting dogs with GPS collars and action cams, let them freely roam in forested areas, and analyzed components of homing in over 600 trials. When returning to the owner (homewards), dogs either followed their outbound track ('tracking') or used a novel route ('scouting'). The inbound track during scouting started mostly with a short (about 20 m) run along the north-south geomagnetic axis, irrespective of the actual direction homewards. Performing such a 'compass run' significantly increased homing efficiency. We propose that this run is instrumental for bringing the mental map into register with the magnetic compass and to establish the heading of the animal.
- Rapid Learning of Magnetic Compass Direction by C57BL/6 Mice in a 4-Armed 'Plus' Water MazePhillips, John B.; Youmans, Paul W.; Muheim, Rachel; Sloan, Kelly A.; Landler, Lukas; Painter, Michael Scott; Anderson, Christopher R. (PLOS, 2013-08-30)Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180° so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.
- Spontaneous Magnetic Alignment by Yearling Snapping Turtles: Rapid Association of Radio Frequency Dependent Pattern of Magnetic Input with Novel SurroundingsLandler, Lukas; Painter, Michael Scott; Youmans, Paul W.; Hopkins, William A.; Phillips, John B. (PLOS, 2015-05-15)We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF (‘RF off → RF off’), but were disoriented when subsequently exposed to RF (‘RF off → RF on’). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF (‘RF on → RF off’), but aligned towards magnetic south when tested with RF (‘RF on → RF on’). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.
- Spontaneous magnetic orientation in larval Drosophila shares properties with learned magnetic compass responses in adult flies and micePainter, Michael Scott; Dommer, David H.; Altizer, William W.; Muheim, Rachel; Phillips, John B. (Company of Biologists Ltd., 2013-04)We provide evidence for spontaneous quadramodal magnetic orientation in a larval insect. Second instar Berlin, Canton-S and Oregon-R x Canton-S strains of Drosophila melanogaster exhibited quadramodal orientation with clusters of bearings along the four anti-cardinal compass directions (i.e. 45, 135, 225 and 315 deg). In double-blind experiments, Canton-S Drosophila larvae also exhibited quadramodal orientation in the presence of an earth-strength magnetic field, while this response was abolished when the horizontal component of the magnetic field was cancelled, indicating that the quadramodal behavior is dependent on magnetic cues, and that the spontaneous alignment response may reflect properties of the underlying magnetoreception mechanism. In addition, a re-analysis of data from studies of learned magnetic compass orientation by adult Drosophila melanogaster and C57BL/6 mice revealed patterns of response similar to those exhibited by larval flies, suggesting that a common magnetoreception mechanism may underlie these behaviors. Therefore, characterizing the mechanism(s) of magnetoreception in flies may hold the key to understanding the magnetic sense in a wide array of terrestrial organisms.
- Use of bio-loggers to characterize red fox behavior with implications for studies of magnetic alignment responses in free-roaming animalsPhillips, John B.; Painter, Michael Scott; Blanco, Justin A.; Malkemper, E. Pascal; Anderson, Chris; Sweeney, Daniel C.; Hewgley, Charles W.; Cerveny, Jaroslav; Hart, Vlastimil; Burda, Hynek; Belotti, Elisa; Topinka, Vaclav (BMC, 2016-11-15)Background Spontaneous magnetic alignment (SMA), in which animals position their body axis in fixed alignments relative to magnetic field lines, has been shown in several classes of vertebrates and invertebrates. Although these responses appear to be widespread, the functional significance and sensory mechanism(s) underlying SMA remain unclear. An intriguing example comes from observations of wild red foxes (Vulpes vulpes) that show a ~fourfold increase in hunting success when predatory ‘mousing’ attacks are directed toward magnetic north-northeast. This form of SMA is proposed to receive input from a photoreceptor-based magnetoreception mechanism perceived as a ‘visual pattern’ and used as a targeting system to increase the accuracy of mousing attempts targeting hidden prey. However, similar to previous observational studies of magnetic orientation in vertebrates, direct evidence for the use of magnetic cues, and field-based experiments designed to characterize the biophysical mechanisms of SMA are lacking. Here, we develop a new approach for studies of SMA using triaxial accelerometer and magnetometer bio-loggers attached to semidomesticated red foxes. Results Accelerometer data were recorded from 415 ground-truth events of three behaviors exhibited by an adult red fox. A 5-nearest neighbor classifier was developed for behavioral analysis and performed with an accuracy of 95.7% across all three behaviors. To evaluate the generalizability of the classifier, data from a second fox were tested yielding an accuracy of 66.7%, suggesting the classifier can extract behaviors across multiple foxes. A similar classification approach was used to identify the fox’s magnetic alignment using two 8-way classifiers with differing underlying assumptions to distinguish magnetic headings in eight equally spaced 45° sectors. The magnetic heading classifiers performed with 90.0 and 74.2% accuracy, suggesting a realistic performance range for a classifier based on an independent set of training events equal in size to our sample. Conclusions We report the development of ‘magnetic ethograms’ in which the behavior and magnetic alignment of foxes can be accurately extracted from raw sensor data. These techniques provide the basis for future studies of SMA where direct observation is not necessary and may allow for more sophisticated experimental designs aimed to characterize the sensory mechanisms mediating SMA behavior.